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Figure 1. Collection of different liquid scenarios from the animated feature: close character interaction in clear visibility, complex underwater phenomena,  
and a large-scale whitewater splash.

Abstract

The Croods'  world  is  under  duress  and  presents  the  characters 
with  a  plethora  of  grandiose  obstacles  at  every  turn.  After  a 
torrential  downpour,  the  Croods  family  is  left  stranded  in  the 
middle of an expansive ocean, forced to swim out of trouble. The 
art direction proved difficult, due to the clear tropical water and 
characters  in  fur-covered  outfits.  In  this  talk,  we  cover  the 
technology  and  techniques  for  executing  a  challenging  liquid 
sequence.
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1. Primary simulation

Overall, our approach was to design a main liquid simulation near 
the characters, embed it in the middle of a procedural ocean, and 
layer a succession of secondary elements (splashes, aeration, 
ripples, etc). We made a concerted effort to break problems down 
into more simplified systems and tools, which empowered artists 
to quickly iterate on more manageable pieces of the system.

The main liquid simulation was performed in Naiad. As typical 
with production character meshes, our input models contained 
self-intersections and rendertime geometry generators (hair/fur). 
We converted to narrow-band VDB [Museth 2013] level sets and 
back to an adaptive polygonal mesh in order to remove unwanted 
interior geometry, retain high fidelity, and provide clean, water-
tight collision meshes.

2. Rasterize particles into VDB level sets

We decided against meshing in Naiad, due to relatively slow serial 
execution, and instead opted for a time-independent solution with 
our new VDB-based Houdini toolkit. However, we could simulate 
far more particles in Naiad than we could bring into Houdini. As 
such,  we  derived  an  importance  metric  in  order  to  cull 
unnecessary particles, but preserve the maximum resolution at the 
interface.  In  Houdini,  the  footprints  of  the  liquid  particles  are 
rasterized into a  high-resolution,  sparse level set.  We opted for 
spherical footprints for speed, though in practice artists preferred 
velocity-aligned teardrop shapes that are composed of a multitude
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of  advected  spheres  with  attenuating  radii.  This  conversion 
process is fully multithreaded and our 8-core workstations could 
process  on  the  order  of  a  few  million  particles  per  second 
depending on the particle velocity and size. We also found that 
VDB allowed artists to generate level sets at far higher resolutions, 
per significantly smaller memory footprints, than existing third-
party tools based on conventional dense or tiled data structures.

3. Filtering / Morphological operations

While the rasterization of particles proved to be very fast, it only 
serves as an initial surface that requires post-processing to obtain 
the  desired  artistic  look.  Visually,  an  artist  would  want  to 
selectively  accentuate  peaking  and  sharp  features,  remove 
artifacts, fill holes, and smooth flat areas, for example.

We  performed  this  post-processing  by  means  of  various 
combinations of costume filtering and morphological operations. 
This unique workflow allows artists to carefully art-direct the final 
look instead of relying on slower and more complex monolithic 
turn-key solutions that attempt to produce the final high-quality 
surface of the particles in a single step. Instead, our artists had fast 
turn-around  with  small  incremental  steps  that  could  easily  be 
modified, reverted, and precisely sculpt the desired look.

Figure 2. Surfacing of the base simulation, using a VDB level set as an  
intermediate representation.  This permits user-controlled morphological  
operations for art direction, followed by fast adaptive meshing.

In practice, the VDB toolset is exposed as a collection of Houdini 
nodes (SOPs) that allows artists a significant degree of flexibility 
in combining the various techniques to manipulate the level set 
surface. This toolset for processing the level set surface can be 
grouped in three types of techniques. The first group of tools is 



based on morphological operators like dilation, erosion, closing 
and opening. They effectively allow the artist to fill holes, remove 
small isolated particles, and sharpen, peak or blur surface details. 
Next,  are  smoothing  operators  that  are  based  on  higher-order 
differential  properties  of  the  level  set.  This  includes  mean-
curvature  flow and  Laplacian  smoothing  that  perform  second- 
order  smoothing  operations.  Finally,  we  use  various  types  of 
kernel-based  convolution  filters  that  can  smooth  (or  sharpen) 
surface details in a very computationally efficient way. Examples 
hereof include Gaussian, mean-value and median-value 3D filters.

4. Level set to mesh conversion

After  the  high-resolution  and  quality  level  set  surface  was 
produced,  we applied an adaptive dual-contouring algorithm to 
tessellate the surface with a mesh that best captures surface details 
while  limiting  the  polygon  count.  Since  the  Naiad  simulation 
domain only covered a portion of the ocean surface, it was tricky 
to  maintain  a  seamless  blend  across  the  boundary.  The  naïve 
approach is  to deform the large ocean plane with a procedural 
ocean shader in Houdini, merge it with our liquid simulation, and 
bake out a heavy per- frame polygonal model. Unfortunately, this 
is computationally expensive, has a very large footprint on disk, 
and  the  resolution  would  likely  never  be  high  enough  for  the 
movie’s close-up shots.

Figure 3. Breakdown of the mesh generation.  Liquid simulation as  
particles (only displaying particles near interface) (A); numerical analysis  
dictates procedural ocean displacement application, no displacement  
(yellow), deferred until rendertime (blue) or baked into levelset (white)(B);  
seamless application of ocean displacement (C); Additional geometric  
elements per artistic demand, driven via simulation analysis (D)

Instead, we developed a hybrid approach to selectively apply (or 
defer evaluation of) the ocean displacement shader. Clearly, it is 
desirable to apply rendertime deformation to the ocean outside the 
simulation domain. However, inside the domain proves to be more 
complicated.  Some  ocean  shader  deformation  must  be  applied 
inside  the  domain,  otherwise  it  is  evident  that  there  is  no 
correspondence to the outside motion. However, this deformation 
cannot  be  applied  uniformly,  as  collisions  would  no  longer  be 
accurate and ballistics would exhibit strange mid-air behavior.

Therefore,  the  effect  of  the  ocean  shader  was  reduced  or 
eliminated in regions we identified via a weighted metric (level set 
value,  curvature,  ballistics  probability,  obstacle  proximity,  etc). 
Further,  it  was  important  to  bake  in  this  deformation  to  the 

primary simulation level set, as every subsequent processing stage 
depended  on  an  accurate  representation  of  the  final  geometry 
(foam riding the surface, splash re-entry collisions, ripples, etc).

To resolve the seam, we selectively flattened the outskirts of the 
simulation domain to  match the  un-deformed ocean  plane.  We 
stored  the  flattening  delta  and  importance  mask  as  polygonal 
vertex attributes in order to selectively apply the procedural ocean 
shader  at  rendertime.  Ultimately,  we  found  this  method  very 
successful;  we  retained  our  hard-earned  simulation  detail,  the 
simulation was successfully embedded in the procedural ocean, 
and we could apply rendertime deformation at virtually infinite 
resolution.

Additional  data-driven  rendertime  deformations  furthered  the 
complexity. We found that no simulator could capture the regions 
of  very  high  visual  frequency  that  occur  on  the  surface  after 
severe disturbance; hence we amplify the turbulence artificially. 
We computed a temporal decay of the vorticity at the interface 
(calculated via VDB operators, stored as another vertex attribute) 
in  order  to  drive regions of  micro-detail  displacement.  Also,  a 
shallow-water  solver  assisted  in  providing  action  to  unify  the 
simulation domain and the procedural ocean.

Figure 4. Additional micro-detail displacement added at rendertime,  
driven by a temporal vorticity heuristic.

5. Ballistic splashes

We did not try to capture the entire behavior in one liquid 
simulation, and secondary elements were completely decoupled 
from the main simulation for maximum artistic control. We 
analyzed the level set and velocity fields for important features 
(curvature, local velocity deviation, divergence, computed via 
VDB operators) in order to dictate the emission into wedged 
particle/SPH ballistics simulations. Artists responded well to this 
workflow, as they could quickly turn around high-detailed 
particle-tendril simulations that were catered to each shot’s art 
direction (as evidenced by character sheeting, dripping hair, etc), 
and they were not bound to a restrictive fluid simulation domain.

This served us well to marry the ballistics and main simulation; as 
upon splash re-entry, we emitted further ballistics in the air, as 
well as utilized our 2D ripple solver to provide high frequency 
details in concert with the splash. Near the interface, we injected 
bubbles and particle foam using similar event-driven triggers. On 
the surface, we transitioned into clustering bubble dynamics, via 
constrained advection in VDB fields and local neighborhood 
surface tension.



Further, since ballistics took up far less spatial real estate than the 
main simulation, they could be rasterized into significantly higher-
resolution VDB level sets. Morphological/filtering operations are 
very important with ballistics (to fill gaps/remove lumps), and we 
devised a successive resolution schema to maximize detail prior to 
extracting the adaptive mesh.

6. Volumetric elements

Highly turbulent events in the water (or air) triggered volumetric 
churn and aeration (or mist), which we simulated in a fast gas 
solver [Henderson 2012] with divergence control, explicit fluid 
velocity, and low dissipation. Our gas toolset allowed for precise 
control over every aspect of the simulation: easy flow fields, 
creative control over emission, and even directly via 
extracting/reinserting grids mid-simulation-step. For medium-
scale texture, bubbles were advected through the velocity fields 
(often blended with other fields for control). We would often 
adjust bubbles post-simulation in relation to the stereo camera rig, 
to meet artistic goals and compose the space's 3D composition.

Many additional environmental volumetric elements were crafted 
in collaboration with Lighting. To capture the mysterious haze 
typical of underwater visibility, we created location-based volume 
setups to assist in art-directing light penetration, depth attenuation 
and hue-shifting, as well as artistic vignetting of the frame. 
Further, we provided a flexible shader approach to underwater 
god-rays, as that effect proved to be very camera specific. Of 
course, no water would be complete without “crap in the water”; 
millions of suspended particles and tiny plankton all at the whim 
of the ocean’s currents, generated at rendertime.

Figure 5.  Examples of volumetric elements: whitewater (A); refracted  
aeration (yellow), foam (red), underwater churn (blue); gaseous mist (C)

7. Lighting and integration

All rendering was done in DreamWorks’ Reyes-based renderer via 
a multipass solution and ultimately composited in Nuke. 
Geometric elements included the main water mesh, ballistics 
mesh (and other secondary meshes), large underwater bubbles, 
crap in the water, and tiny droplets as particles. Volumetric 
elements included surface foam, aeration, near-interface bubbles, 
aerial mist, underwater haze, silt, god-rays, and whitewater 
(suspended inside the meshes). We made much use of simulation 
data in vertex attributes and extra volume fields for our shader 
networks per flexibility in compositing. Rendering VDB volumes 
proved very successful, as the hierarchical data structure is both 
fast and memory efficient. FX prototyped the majority of the 
shader networks, and Lighting/FX worked in unison for the final 
composite.

Figure 6.  A sampling of render passes that comprise the effect: graded 
refraction (A), graded reflection (B), refracted volumetric elements (C),  
graded aeration (D), graded whitewater (E), final composite (F)
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