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We present core components of a hair modeling and dynamics solution for the feature film
industry. Recent research results in hair simulation are exploited as a dynamics model based on
solving the Euler-Lagrange equations of motion for a discretized Cosserat curve is implemented in
its entirety. Solutions to the dynamics equations are derived and a framework for symbolic
integration is outlined. The resulting system is not unconditionally positive definite but
requires balanced physical parameters in order to be solvable using a regular linear solver. Several
implementation examples are presented, as well as a novel modeling technique based on non-linear
optimization.
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Chapter 1

Introduction

Over the past decade the visual effects industry has seen most major com-
panies develop in-house character animation pipelines. The need for propri-
etary pipelines stems from a need for flexibility and performance far beyond
what any one commercial software can provide, coupled with economical
and infrastructural considerations. Features such as “Spiderman”, “King
Kong” and the “Lord of the Rings” trilogy push these systems to the limit
and beyond, as the main characters often are entirely CG and the audience -
being human - is inherently good at noticing abnormal appearance in other
humanoids.

An important part of visualizing characters on screen is hair, a complex
task in many aspects; modeling, grooming, simulating, interacting with and
finally rendering hair are all topics subject to extensive research. This thesis
was written while implementing some of the latest advances in hair modeling
and dynamics at Digital Domain (DD), one of the most prominent visual
effects companies in the industry. While the thesis doesn’t attempt to solve
all the problems related to putting hair on the big screen, it does present a
few key components of a hair pipeline, as well as outline its potential use in
a large scale character pipeline.

1.1 Purpose and aim

The purpose of this thesis project has been to implement and examine the
Super-Helix model for hair modeling and dynamics simulation, as proposed
by Bertails et al. in [3]. This in order to support a decision regarding
whether to adopt the model into the character pipeline at Digital Domain,
and to facilitate a possible adoption. The aim has been perform the math
derivations behind and implementation of the Super-Helix model for dynam-
ics, to examine the modeling aspects, and to present a software implemen-
tation that is usable yet extensible, along with a discussion of its qualitative

1
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1.2. OUTLINE CHAPTER 1. INTRODUCTION

properties.

1.2 Outline

The thesis is organized as follows. Initially, chapter 2 summarizes existing
research in the field. Chapter 3 presents a brief overview over the existing
hair/character pipeline at Digital Domain, and sketches the parts of the
new pipeline pertaining to hair modeling and rendering. Then focus turns
to the actual kinematics and dynamics as chapters 4 and 5 present the full
Super-Helix derivations and implementation, respectively. Finally, chapter
6 sums up the results and discusses the qualitative properties of the model.

2
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Chapter 2

Previous work

We divide previous work into three categories: styling, dynamics and render-
ing. All three categories have seen extensive research over the years, where
each publication usually deals with a fairly narrow special case. For brevity,
we only present the relevant parts of the styling and dynamics categories
here, as the scope of this thesis largely excludes rendering.

2.1 Surveys

For an introduction to the topic of hair in computer graphics, Ward et al.
[26] present an extensive overview, as well as provide several detailed stud-
ies and key insights. Its contributors include some of the most prominent
persons currently active in the field, many of whom have at least one pub-
lication included in the survey. While this author would have prefered a
second glance at the field by an alternate source, no such publication was
readily available to the public at the time this thesis was written.

2.2 Styling

A large body of work has been published on modeling and grooming hair
in creative ways, all with the general objective to increase productivity and
creative control while maintaining realism. The user interface is given atten-
tion by Malik [15] who uses a stylus pen interface with abilities to implant,
cut and style hair in an intuitive way. The result is a low learning threshold
and very rapid results (10-20 minutes for a basic hairstyle [15]), at the cost
of realism and detail [26]. Kim and Neumann present thin shell volumes
for governing hair growth [14] and a multi-resolution hierarchical modeling
technique with the capability to copy-paste detail from one area to another
[13]. Other methods include fluid-flow styling by Hadap and Magnenat-
Thalmann, vector fields by Yu [30] and photography-based hair modeling

3
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2.3. DYNAMICS CHAPTER 2. PREVIOUS WORK

by e.g. Wei et al. [28].

Some physically based modeling efforts have also been made, but they re-
main on the experimental level [26]. The user sacrifices direct control to
achieve a higher degree of realism in the actual underlying physics and vi-
sual appearance.

2.3 Dynamics

Hair dynamics simulation is a very hard task indeed, as hair strands are
highly anisotropic in their flexible behavior and the interactions between
hairs are complicated by an anisotropic surface microstructure and tribo-
electric properties [26].

A multitude of approaches to hair dynamics simulation have been presented
through the years. One can divide the most interesting advances into three
categories: strand/wisp, multi-resolution and full continuum models. These
will be described in more detail below.

It is important to consider what application the simulation will have. In
computer games and other realtime applications realism must always be
weighted against performance, while for feature film production some speed
usually can be traded for increased accuracy and level of control. Creat-
ing matching hair grooms for several different dynamics models is generally
undesirable, due to the vast time consumption involved in any one setup.

2.3.1 Strands and wisps

The perhaps most intuitive way to model hair is to start by looking at the
individual hair strands and try to mimic their behaviour using some method
from the field of mechanical engineering. To achieve large-scale effects the
simulated hairs are relatively sparsely populated and intermediate hairs are
statically interpolated over the surface as a post-step to simulation, see e.g.
[3] and [6]. Another approach is to use the strand as a “skeleton curve”,
governing the deformation of a wisp [19], a virtual volume envelope which
is filled with hairs at render time. While the two approaches are sufficiently
similar to be presented in the same section, an important difference is that
the wisps explicitly enclose their hairs in isolated clumps, while interpolative
methods don’t necessarily attribute an interpolated hair to any one guide
hair. In broad terms this gives the latter an edge in representing straight
and wavy hair with a frequent of forming and unforming of clumps, while
the former is better suited to handle curly hair where clumps are more static.

The mass-spring model, as originally introduced by Rosenblum et al. in
1991 [21], is perhaps the simplest and most straightforward approach to

4
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strand/wisp based simulation. The hair is represented as number of point
masses, connected by springs, and all interactions are modeled as forces and
constraints affecting the masses. The mass-spring model is an example of
a nodal model, meaning any global response to a local interaction, such as
a collision, needs to be advanced through the nodes at a speed bounded by
the timestep size. This is fine for isotropic, “springy” objects, but in order
to simulate e.g. the longitudinal rigidity of a hair strand the response forces
have to be ramped up to extents that cause the simulation to explode unless
the timestep size is reduced several orders of magnitude. Thus improving
the performance of the large-scale dynamics - which are of the most interest
visually - is overshadowed by a nearly infinitesimal timestep restriction in
order to prevent springiness. This is refered to as “stiffness” in the equations
and is a major obstacle when designing dynamics models.

To address the issues in mass-spring models, methods such as one-dimensional
projective equations by Anjyo et al. [11] and rigid multi-body serial chains
due to Hadap and Magnenat-Thalmann [9] and improved upon by Chang
et al. [6], have been proposed. Both maintain the nodal based approach
but restrict the degrees of freedom to only include bending and torsion.
This precludes stretching already at the model stage. However, the former
does not account for torsional rigidity and needs special care to deal with
punctual forces. The latter, being formulated in reduced coordinates, suffers
from difficulties in implementing hard constraints using an implicit integra-
tion scheme and the only proposed alternative solution is “non-trivial” [26].

Moreover, neither of the above models properly handles deformations of
curly hair and non-linear buckling and bending-twisting discontinuity ef-
fects [3]. Bertails et al. [3] present an approach to simulating the dynamics
of Cosserat curves, as originally introduced to the CG community for stat-
ics simulation by Pai [16]. Their model - called the Super-Helix due to its
composition of elements of constant helicity - accurately handles a multi-
tude of non-linear effects previously never addressed in computer graphics.
While external forces enter the equations in a very elegant way, being for-
mulated in reduced coordinates - much like the multi-body serial chains -
the model does not handle hard constraints well. In fact, implementing hard
constraints in the Super-Helix model can be “tricky” [26].

Recently, hybrid schemes have been devised by e.g. Choe et al. [7] that
combine the strengths of several different nodal methods and use implicit
integration, global constrained dynamics and other recent advances gathered
from the neighboring fields of flexible bodies and cloth. While they allevi-
ate many of the problems mentioned, they are still battling several issues
inherent in their underlying methods such as inefficient inter-hair collision
detection [7] and some amounts of stretching [26].

5
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2.3. DYNAMICS CHAPTER 2. PREVIOUS WORK

2.3.2 Multi-resolution methods

An important feature of natural hair is the clumping of hair strands due to
frictional forces, and the ongoing forming and dissolution of clumps. While
the wisp models essentially mimic this behaviour in a static way, only re-
cently have mutual hair interactions been exploited mainly for performance
reasons. Ward et al. [27] use discrete levels of detail (LOD) based on
viewing distance, hair motion and visibility to reduce computation times
intelligently. In their Adaptive Wisp Tree (AWT) method [5], Bertails et al.
model mutual interactions by employing a tree structure for a hierarchical
subdivision of wisps. While rendering at the finest level of every branch,
simulation is adaptively done at any level, depending on the local complex-
ity of motion. It helps mainly to increase the efficiency and stability of
previous wisp-based simulation approaches, but [7] suggests it might also
help simulate wisps with unclear boundaries and strands shifting between
wisps, an inherent problem in that approach.

2.3.3 Continuum models

An entirely different approach to simulating hair - presented by Hadap and
Magnenat-Thalmann in [9] - is to view it as a continuum, and model its
motion using fluid dynamics. This technique is based on Smooth Particle
Hydrodynamics (SPH) and handles complex hair interactions and collisions
nicely. However, apart from an inability to handle certain clumping and
other small-scale effects it is prohibitively expensive computationally-wise;
computation times of several minutes per frame for 10,000 hair strands have
been reported [26].

6
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Chapter 3

Hair pipeline at DD

At the core of the hair pipeline at Digital Domain is Autodesk’s Maya Hair,
first featured in Maya version 6 and subsequently improved upon in versions
7 and 8. Maya Hair is a strands/wisps based package with a mass-spring
model at its core. It takes NURBS curves as input geometry and uses Maya’s
Paint Effects system to render “clump hairs” post simulation, according to
user-provided parameters. Consequently, most modeling techniques in the
pipeline aim at achieving a “target” or “rest” configuration of the guide
hairs, upon which dynamics simulations are run. Pixar’s RenderMan is
used to render the final shots so the Paint Effects settings are exported to a
custom RenderMan shader, which uses that information and the guide hair
curves to generate the final result.

While having proven sufficient in films such as “Aeon Flux”, “My Super-Ex
Girlfriend” and “King Kong”, the current pipeline has considerable room for
improvement. The general consensus among artists and supervisors was that
although the modules work in theory, any larger scale hair rigging projects
will inevitably suffer from the lack of mature grooming tools, limited or in-
accurate visual feedback and unreliable simulation results. As in any visual
effects pipeline various tricks and cheats are employed to adapt the available
tools to show-specific tasks, but with sparse reuse of previous results and a
steep learning curve for new hires, efficiency could be improved considerably
by replacing and/or complementing certain key components of the pipeline
[23] [18] [17].

3.1 Styling

The artists often work with different components of the hairdo separately,
for example dealing with the two sides of a parting separately or creating the
bangs disjoint from the scalp hair. In fact, oftentimes more than one hair
dynamics system will be employed in the same hairdo, as different lengths

7
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3.1. STYLING CHAPTER 3. HAIR PIPELINE AT DD

of hair tend to require different parameters to the model, and to improve
manageability in general. This unfortunately precludes any physical inter-
action between the different pieces of the hairdo.

With a very limited set of grooming tools available in Maya Hair, and with
the added requirement of having to bake and render anything in Render-
Man for visual feedback, artists employ various tricks to achieve the wanted
results using the least amount of time. An informal survey revealed which
techniques are most commonly used, most of which have been devised solely
to try to work around the limitations of the pipeline.

Figure 3.1: The hair rig for the character “Aeon Flux” from the feature film with
the same name. The “gravity” based modeling technique was employed, altogether
taking about two weeks to finish. In the end a radically simpler model with a more
specific rest setting was used, since the Maya Hair system had problems handling
the extreme motions and geometry collisions in the sequence. Image courtesy of
Dan Patterson and Digital Domain.

Gravity based modeling is motivated by the lack of coherence among
adjacent guide hairs in Maya Hair. Since deformations made to one guide
hair are not distributed to its neighbors, grooming a dense set of guide
hair by means of direct nodal manipulation is unfeasible. By employing the
dynamics solver, the artist gains a larger-scale control over the flow of the
hair. For example, applying a constant gravitational force and tilting the
model’s head in some direction makes the hair fall in that direction, giving
the effect of a very crude comb. The technique is usually applied to subsets

8
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of the hairdo at the time by locking the other parts, and is particularly
useful when creating parted, straight haircuts, such as the page of the main
character in the production “Aeon Flux” (see Figure 3.1). However, getting
the hair to fall just right is extremely tedious and many iterations usually
have to be performed. [18]

Textures for placement and shape are another attempt to remedy the
lack of interpolation over neighboring guide hairs. For example, by painting
directions with a broad, blurry brush, one can achieve a kind of interpo-
lation. While this seems like a sufficient solution, it is still quite tedious
and, again, results are not entirely visible until after recomputing the cache,
simulating and rendering. Furthermore, Maya Hair does not adhere exactly
to placement textures, meaning stray hairs regularly have to be removed in
compositing.[17]

Collision objects are commonly used as primitive proxy force objects to
help shape the hair when gravity is activated. For instance, a properly placed
collision sphere can prevent hair from obstructing the face of a character,
guiding the hair to fall as though it was under the influence of internal
stiffness and curl, where none such actually is present.[23]

Hair helmets are based on the thin shell volumes technique by Kim and
Neumann [14]. The artist models a surface object that defines the volume
that the hair should fill. The hair is then grown into the volume from its
roots, bending and flowing along the surface according to some direction
vector. Usually the NURBS surface isoparms (i.e. the lines on the surface
representing points of the same parameter in the NURBS equation) are
used to control the direction although various methods are feasible. This
technique has worked really well in some productions but takes a great deal
of care in setting up, with low reusability between different setups [23].

3.2 Dynamics

The only hair dynamics solution currently in use at Digital Domain is Maya
Hair. Although a pinnacle in the history of computer animation, interviews
with professionals with extensive experience in the field ([18], [23], [12])
reveal that the package was never fully finished as a product, and suffers
from implementation flaws severe enough to adversely affect or even prohibit
many uses in feature film production.

First, due to the stiffness problem discussed in section 2.3, any mass-spring
based dynamics model will have a certain amount of inherent flexion, lead-
ing to stretching of hair strands. While increasing the stiffness of the springs
remedies the stretching, pushing it to the extents necessary to simulate hair

9
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causes stiff timestep constraints and severe performance problems [26] [6].
Maya Hair not only stretches, but the lack of hard constraints is also known
to cause dislodging of the hair roots from the underlying surface [23]. This
is especially the case in the presence of large temporal derivatives (e.g. large
changes in position between frames), a very common scenario when work-
ing with data from motion capture or tracking devices, which in turn are
ubiquitous in feature film production. Some fixes have been provided by
Autodesk, although it remains unclear whether these in fact succeed to ad-
dress the issue properly [12]. In any event this general weakness in nodal
models is significant enough to warrant extensive research efforts to find
other approaches [6].

Furthermore, colliding Maya Hair against arbitrary geometry imposes a se-
vere restriction on the timestep size. The exact cause of the problem is
unknown, but an attempt to remedy this was made by Autodesk by provid-
ing two specific collision objects - a sphere and a box - rather than using
ordinary scene geometry. These can be bound in the usual way to trans-
formations of scene geometry and used to fill other geometric shapes, but
approximating shapes from spheres and boxes always introduces the risk of
hairs getting caught in creases and interfaces, due to numerical imprecision
and/or imprecise volume fitting [12]. The consensus among artists and de-
velopers was that some further form of collision geometry needs to be added,
preferably from a modular, in-house collision engine which handles both de-
tection of and response to collisions. As Maya Hair provides no facilities for
incorporating a custom collision solution, this was one of the motivations to
develop a proprietary hair system.

3.3 Rendering

At the time of writing, Digital Domain relies heavily on Pixar’s Render-
Man for rendering 3D elements, hair being one of them. This means that
the Paint Effects settings done in Maya need to be exported and some-
how emulated with RenderMan shaders. Using a custom RenderMan plugin
named Dogbeard, the sparse set of guide hairs output from the simulation are
interpolated to form the tens or hundreds of thousands of hairs that make
up a complete hairdo. The interpolation is essentially linear, but numer-
ous parameters are exposed, such as curliness, frizz, clumping etc. While
there exist scripts to bake Paint Effects settings to Dogbeard, there is no
1-to-1 mapping between the two, so consequently the artists need to bake
the entire hairdo and render it in RenderMan to see the impact of changes
made at the modeling stage. As some recent (non-human) characters have
been populated by tens of thousands of guide hairs, the resulting tedious-
ness of creating previews has severely deteriorated the artists’ productivity
[17]. Implementing new, more accurate, preview tools in Maya was seen as
a possible extension to the results of this thesis.
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While Dogbeard has proven successful in various productions - and not only
strictly for hair; feathers and grass are other examples - it suffers from one
major drawback: interpolated hairs are static and do not in any way par-
ticipate in the dynamics simulation. This has several repercaussions: First,
whatever detailed geometry wedges between two guide hairs (a common ex-
ample would be the starched collar of a shirt) will interpenetrate with an
arbitrary amount of the interpolated hairs between those two guide hairs.
Second, the hairs themselves will perform no interpenetration checks; while
this can be somewhat remedied using heuristics for damping and friction,
side effects include loss of volume in dense hair as no volume preservation is
enforced, potentially causing the hair to assume an overly flimsic and oth-
erwise unphysical look.

Also, as all communication within Dogbeard uses plain NURBS curves,

Figure 3.2: A sharp object wedges between two guide hairs, causing the interpo-
lated hairs to penetrate it. This can have highly undesirable, visible effects such
as hair penetrating the collar of a shirt.

no normals are defined at the modeling stage and thus must be conjured
up at render time. While this might not seem relevant to hair of perfectly
circular cross-section, most hair does in fact display a certain ellipticity [3]
and thus requires the rendering and dynamic behaviour to match. Also,
other applications than plain hair (again, grass perfectly examplifies this)
might very well require well defined normals to shade properly, if at all. This
exposed another, different, kind of need which was also taken into account
when settling for a model.

11
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Chapter 4

The Super-Helix model

A key objective of this thesis was to explore the Super-Helix model by
Bertails et al.. As shown in chapters 2 and 3 the interest in a new dynamics
solver in general and the Super-Helix model in particular was motivated by
several factors, including the issues with the current hair pipeline at DD
and the very promising results published in [3], [2] and [26]. While the
strengths and weaknesses of most other models are fairly well-established in
the community, putting effort toward investigating the very recent Super-
Helices and verifying their usability seems particularly worthwhile.

4.1 Preliminaries

The Super-Helix concept is fundamentally based on the Elastica theory
developed by Euler and Bernoulli, and later on generalized by brothers
Cosserat. The Cosserat curve is a special case of the broader Cosserat
theory for the elasticity of shells, rods and points.

Pai introduced the Cosserat concept into the computer graphics commu-
nity with the Strands paper [16], dealing with the statics of surgical wire.
Bertails et al. extended Pai’s work by presenting a new formulation of the
Kirchhoff equations for elastic rods [4], introducing collision response into
the statics equations. The results look visually interesting but Bertails et al.
later showed that the Kirchhoff equations are very stiff and thus expensive
to solve numerically [3]. They also do not handle the dynamics of the hair,
meaning they are of questionable value in a character animation scenario.
Instead Bertails et al. propose a so called global approach, inspired by the
Lagrangian deformable models promoted by Baraff and Witkin [1]. Baraff
and Witkin describe how the integration of large-scale effects due to local
interactions in any nodal (i.e. “non-global”) model for flexible bodies re-
quires timesteps that are “potentially disastrous” for performance [1]. They
also show that their derived expressions minimize the deviation between the

12
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resulting motion and the motion of an ideal continuum body.

The Super-Helix model addresses several of the issues that plague previous
models. First and foremost, the degrees of freedom of the model are exclu-
sively in the curvatures, meaning non-stretching is inherently and strictly
enforced with no constraints on the generalized coordinates. Furthermore,
since its degrees of freedom naturally comply with helical shapes, it deals
with curly hair strands with unprecedented accuracy, not just individually
but also collectively. Also, being a global model, it handles buckling and
other effects in real hair that are due to its longitudinal stiffness and, again,
not easily emulated by nodal models [2].

The terms “nodal” and “global” are used here to distinguish between models
that deal with interactions locally (and thus suffer from stiffness as discussed
in section 2.3) and models that handle all interactions globally. As we will
see, the Super-Helix model belongs to the latter, even though one could
argue that it in a sense still is nodal.

4.1.1 The Cosserat curve

Figure 4.1: The Cosserat curve is described by a centerline r(s) and a local
material frame (ni(s))i=0,1,2 that is defined at every point along the curve.

The fundamental component of the Super-Helix model is the Cosserat curve,
which consists of a centerline r(s) and an orthogonal material frame (ni(s))i=0,1,2

(see Figure 4.1), with n0(s) denoting the tangent r′(s) and n1(s) and n2(s)
denoting the normal and binormal, respectively. For each infinitesimal step
δs along the curve, this local space, defined by the position r(s) and the
material frame, is affected by an affine transformation (i.e. translation and
rotation) according to three local curvatures (κi(s))i=0,1,2. Here κ0 denotes

13
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torsion (i.e. the rotation of the normals n1(s) and n2(s) around the tan-
gent n0(s)) and κ1 and κ2 (rather ambiguously) denote the curvature, i.e.
the local change of the normal n0(s) in the n1(s) and n2(s) directions. An
important effect of this parametrization in space is that the curve is C1-
smooth, meaning the centerline and material frames are continuous in s.

The local parameterization of the Cosserat curve is similar to that of the
Frenet-Serret formulas, in that a material frame is attached to each point
along the curve, and that curvatures are defined based on the local change
of this frame. The difference is that the Frenet-Serret model only has one
curvature (in the n1 direction) and one torsion. This means it can describe
any curve locally, while it is more limited than the Cosserat model given a
fixed material frame (see Figure 4.2). In fact, and as is further discussed in
section 4.2.9, the flexibility of the Cosserat model comes at the price of some
amount of dependency between the curvature parameters, which affects the
conditioning of the system. We will however see how the flexibility given a
fixed material frame is crucial to the Super-Helix model.

Figure 4.2: A Cosserat curve (a) and a Frenet-Serret curve (b) have similar
formulations but the Cosserat curve has a greater flexibility given a particular
material frame. While the Cosserat curve is free to bend in both the n1 (b)
and n2 (c) directions the Frenet-Serret curve is limited to bending in the n1 (e)
direction.

4.1.2 Super-Helix reconstruction

Instead of posing equations for the Cosserat model of continuous curva-
ture and integrating numerically in s, Bertails et al. perform an initial
discretization by assuming the curve is divided into N helical segments SQ

of constant curvatures (qi,Q)i=0,1,2,Q∈[0..N ]. The curve becomes a collection
perfectly helical segments; hence the name “Super-Helix”. We write the

14
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discretized curvature function

κi(s,q) =
N∑

Q=0

χQ(s)qi,Q (4.1)

where χQ(s) is the Dirac function

χQ(s) =
{

1 if s ∈ SQ

0 else (4.2)

which simply tells which three curvature values to use for a specific inter-
val s ∈ SQ. In order to maintain the C1 continuity of the Cosserat curve,
Bertails et al. constrain the initial position and orientation of each segment
to be the final position and orientation of the preceeding segment - or the
initial values of the entire SH in the case of the root segment. Given these
intervals of constant curvature, reconstructing the Super-Helix amounts to
piecewise integration of what resembles standard helix equations. The C1

continuity constraint governs the initial values of each segment, as visible in
Figure 4.3.

Figure 4.3: A two-segment Super-Helix. The reconstruction of the centerline
(grey) and material frame (black) is visible throughout the strand. Notice how
the C1 continuity constraint causes the normals and bi-normals to seamlessly
transition from one segment to the next.

The Super-Helix concept is described in some detail in [2] and [3], but both
publications avoid to point out a lot of the peculiarities that are of tremen-
dous importance when actually implementing the Super-Helix model. In
order to complement this, we start by defining all of the involved variables,
paying extra attention to indices and dependencies. The initial position and
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coordinate frame can be written

n0
i,L(t) = gi(t) for i = 0, 1, 2 (4.3)

r0
L(t) = h(t) (4.4)

where g and h are inputs from e.g. keyframe animation or interactive ma-
nipulation. The notation gets a bit hairy here (no pun intended), as the
superscript 0 denotes the 0:th segment, the subscript L denotes the left -
i.e. initial - point of the segment, and i as usual enumerates the material
frame axes.

The Darboux vector is an essential part of the equations. For each position
s along the Super-Helix it is defined as the curvature vector (κi(s))i=0,1,2

transformed into the orthogonal space spanned by the local material frame
(ni)i=0,1,2, such that

Ω(s,q, t) = nQ
0 (s,q, t)κ0(s,q) + nQ

1 (s,q, t)κ1(s,q)

+ nQ
2 (s,q, t)κ2(s,q), (4.5)

with the superscript Q indicating variables pertaining to segment SQ. By
the properties of the Cosserat curve, the Darboux vector describes the rate
of change of the material frame in s:

n′i(s,q, t) = Ω(s,q, t)× ni(s,q, t) for i = 0, 1, 2 (4.6)

Since the Super-Helix has piecewise constant curvatures, and the coordinate
frame is orthogonal, one can show that the Darboux vector is piecewise
constant as well [3]:

Ω′ =
∑

i

κ′ini + Ω×Ω = 0 (4.7)

We now present some definitions that are utilized throughout the Super-
Helix reconstruction. Note the insertion of the initial values, and how they
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impose explicit time dependencies in several places.

Darboux vector in initial position:
Ω0(q, t) = Ω(0,q, t) = g0(t)κ0(0, t) + g1(t)κ1(0, t) + g2(t)κ2(0, t)

(4.8)

Length of Darboux vector:
(explicit t dependency vanishes due to orthogonality of ni)

Ω(s,q) = |Ω(s,q, t)| (4.9)
Length of Darboux vector in segment SQ:

ΩQ(q) = Ω(s,q), sQ ∈ SQ

Normalized Darboux vector:

ω(s,q, t) = Ω(s,q, t)
/
Ω(s,q) (4.10)

Shorthand for normalized Darboux vector in SQ:
ωQ(q, t) = ω(s,q, t), s ∈ SQ (4.11)

Initial material frame for segment SQ:

nQ
i,L(q, t) = nQ

i (sQ
L ,q, t) (4.12)

To take the next step towards a complete reconstruction of the Super-Helix,
the parallel and perpendicular projections of the i:th coordinate axis span
a plane in which lies the s derivative of that coordinate axis:

Parallel projection of coordinate axis onto normalized
Darboux vector (in segment SQ):

nQ‖
i,L(q, t) =

(
nQ

i,L(q, t)·ωQ(q, t)
)

ωQ(q, t) (4.13)

Perpendicular projection:

nQ⊥
i,L (q, t) = nQ

i,L(q, t)− nQ‖
i,L(q, t) (4.14)

For element S0; note the time dependence coming from 4.3:

nQ0‖
i,L (q, t) =

(
nQ0

i,L(t)·ωQ0(q, t)
)

ωQ0(q, t) (4.15)

nQ0⊥
i,L (q, t) = nQ0

i,L(t)− nQ0‖
i,L (q, t) (4.16)

Now we can write the reconstruction of the material frame along a segment
SQ. Note how the dependence on the entire preceeding part of the Super-
Helix enters recursively through the nQ‖

i,L and nQ⊥
i,L terms:

nQ
i (s,q, t) = nQ‖

i,L(q, t) + nQ⊥
i,L (q, t) cos(ΩQ(q)(s− sQ

L ))

+ ωQ(q, t)× nQ⊥
0,L (q, t) sin(ΩQ(q)(s− sQ

L )). (4.17)

As 4.6 suggests, the change in the material frame is closely related to the
Darboux vector. Indeed 4.17 describes how the coordinate axes of the ma-
terial frame rotate about the Darboux vector with angular velocity ΩQ. In
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the case of κ0 6= 0, κ1 = 0, κ2 = 0, the Darboux vector aligns with the
tangent n0 (see eqn. 4.5), which in effect is not subject to any rotation.

Coordinate axis i at start of segment SQ,
as a function of SQ−1:

nQ
i,L(q, t) = nQ−1

i,R (q, t) = nQ−1
i (`Q−1,q, t)

= nQ−1‖
i,L (q, t) + nQ−1⊥

i,L (q, t) cos(ΩQ−1(q)(`Q−1))

+ ωQ−1(q, t)× nQ−1⊥
0,L (q, t) sin(ΩQ−1(q)(`Q−1)) (4.18)

Coordinate axis i at start of segment SQ1 ,
as a function of SQ0 :

nQ1
i,L(q, t) = nQ0

i,R(q, t) = nQ0
i (`Q0 ,q, t)

= nQ0‖
i,L (q, t) + nQ0⊥

i,L (q, t) cos(Ω0(q)(`Q0))

+ ωQ0(q, t)× nQ0⊥
0,L (q, t) sin(Ω0(q)(`Q0)). (4.19)

As stated in equations 4.3 and 4.8, Ω0 depends explicitly on time, which
together with 4.15 and 4.16 shows the explicit time dependence of nQ0⊥

i,L and

nQ0‖
i,L . Equations 4.17-4.19 then show how this explicit time dependence is

advanced throughout the reconstruction of the Super-Helix.

Now we turn to the reconstruction of the centerline rSH . Since n0 = r′, inte-
grating n0 symbolically gives us the centerline rSH(s,q, t) as an initial value
rQ

L (q, t) (entering as an integration constant) plus a function NQ(s,q, t) that
depends on the initial frame of reference and curvature.

rSH(s,q, t) = rQ
L (q, t) + nQ‖

0,L(q, t)(s− sQ
L ) + nQ⊥

0,L (q, t)
sin(ΩQ(q)(s− sQ

L ))
ΩQ(q)

+ ωQ(q, t)× nQ⊥
0,L (q, t)

1− cos(ΩQ(q)(s− sQ
L ))

ΩQ(q)
. (4.20)

This is all for an arbitrary segment SQ. Noting that rQ
L = rQ−1

R , we see
how the final value of the previous segment enters as the initial value of this
segment, so

rSH(s,q, t) = rQ−1
R (q, t)

+ nQ‖
0,L(q, t)(s− sQ

L ) + nQ⊥
0,L (q, t)

sin(ΩQ(q)(s− sQ
L ))

ΩQ(q)

+ ωQ(q, t)× nQ⊥
0,L (q, t)

1− cos(ΩQ(q)(s− sQ
L ))

ΩQ(q)
.

(4.21)
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Repeating this leads to the recursion

= rQ−1
L (q, t)

+ nQ−1‖
0,L (q, t)(`Q−1) + nQ−1⊥

0,L (q, t)
sin(ΩQ−1(q)(`Q−1))

ΩQ−1(q)

+ ωQ−1(q, t)× nQ−1⊥
0,L (q, t)

1− cos(ΩQ−1(q)(`Q−1))
ΩQ−1(q)

+ nQ‖
0,L(q, t)(s− sQ

L ) + nQ⊥
0,L (q, t)

sin(ΩQ(q)(s− sQ
L ))

ΩQ(q)

+ ωQ(q, t)× nQ⊥
0,L (q, t)

1− cos(ΩQ(q)(s− sQ
L ))

ΩQ(q)

. . .

and finally

= rQ0
L (t)

+
Q−1∑
Q̂=0

[
nQ̂‖

0,L(q, t)(`Q̂) + nQ̂⊥
0,L (q, t)

sin(ΩQ̂(q)(`Q̂))

ΩQ̂(q)

+ ωQ̂(q, t)× nQ̂⊥
0,L (q, t)

1− cos(ΩQ̂(q)(`Q̂))

ΩQ̂(q)

]
+ nQ‖

0,L(q, t)(s− sQ
L ) + nQ⊥

0,L (q, t)
sin(ΩQ(q)(s− sQ

L ))
ΩQ(q)

+ ωQ(q, t)× nQ⊥
0,L (q, t)

1− cos(ΩQ(q)(s− sQ
L ))

ΩQ(q)
(4.22)

4.2 Dynamics

To avoid the stiffness problems in previous hair dynamics models, Bertails
et al. turn to Lagrangian mechanics. Using the curvatures of the kinematics
model as the generalized coordinates in a Lagrangian formulation, they ex-
ploit the discretization of the Cosserat curve to describe a potentially very
complex shape using a relatively sparse set of parameters. The resulting
system is of size 3N where N is the number of segments in the Super-Helix,
usually in the range of 5 to 15. This reduction of dimensionality is an attrac-
tive property of Lagrangian models. The key feat however is the way the
Super-Helix reconstruction process described above models the inextensibil-
ity of hair, without imposing any constraints on the generalized coordinates
(i.e. curvatures). By using the Super-Helix model in a Lagrangian formu-
lation Bertails et al. thus effectively remove the main cause of stiffness in
previous - nodal - models [3].
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The basic concept of working with Lagrangian models (as described in [29])
is to associate masses with the generalized coordinates and affect them with
generalized forces, which cause a displacement of the masses from which one
can derive kinetic energy. By relating the internal, “elastic” energy with the
deviation from some rest state, one obtains a set of equations which, for
example, can be used in an energy minimization scenario.

4.2.1 Euler-Lagrange equations

The Euler-Lagrange equations of motion are a result of Hamilton’s principle,
which bounds the energy of the path between two states in the configuration
space of a generalized system [24]. We omit the full derivation here, but the
general result can be written

d
dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (4.23)

where i indicates that several coordinates might be involved. Bertails et al.
write the Lagrangian L = T−U , where T is kinetic energy and U is potential
energy, and include a heuristic damping term D. Adding a generalized force
Q, one obtains

d
dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+

∂U

∂qi
+

∂D

∂q̇i
= Qi (4.24)

Expanding this equation by again introducing the index Q to indicate that
the involved coordinates relate to segment SQ, and writing out the general-
ized force Q as the external force F translated to curvature coordinates (see
section 4.2.2),

d
dt

(
∂T

∂q̇iQ

)
− ∂T

∂qiQ
+

∂U

∂qiQ
+

∂D

∂q̇iQ
=
∫ L

0

JiQ(s,q, t)·F(s, t)ds. (4.25)

Solving this equation for the change in q gives us the path of least energy
for the evolution of the Super-Helix in time, which is indeed the true path
according to Hamilton’s principle [24]. In the specific case of the Super-
Helix, the kinetic energy T is defined in [2] and [3] as

T (q, q̇, t) =
1
2

∫ L

0

ρS
(
ṙSH(s,q, t)

)2
ds (4.26)

where ρ is the mass density and S is the elliptical cross-section area, both
assumed constant. The internal potential energy is written

U(q, t) =
1
2

∫ L

0

2∑
i=0

(EI)i

(
κSH

i (s,q)− κn
i (s)

)2
ds (4.27)
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where the κn
i are the natural curvatures, in other words the rest state of the

Super-Helix. Assuming an isotropic material, E is Young’s modulus (set to
approximately 4· 109Pa) and Ii are the moments of inertia, given in [2] as

I1 =
π

4
a1a

3
2

I2 =
π

4
a3
1a2

with the torsional component defined slightly differently as

(EI)0 = µJ

µ =
E

2(1 + σ)

J = π
a3
1a

3
2

a2
1 + a2

2

where σ is Poisson’s ratio (set to 0.48). The heuristic model for dissipation
potential D is written

D(q, q̇, t) =
1
2

∫ L

0

γ

2∑
i=0

(
κ̇SH

i (s,q)
)2

ds (4.28)

in [3] and

D(q, q̇, t) =
1
2

∫ L

0

µ

2∑
i=0

(EI)i

(
κ̇SH

i (s,q)
)2

ds (4.29)

in [2], and essentially models energy dissipation due to inter-hair frictional
forces. The reasoning behind the difference in definitions is that γ approxi-
mately encompasses the µ(EI)i factors, but it turns out (see section 4.2.8)
that the choice of model has a considerable effect on the system. We chose
to use 4.29.

4.2.2 Differentiation

As will become apparent, in order to solve the system differentiation needs to
be performed in two different variables, namely curvature and time. We start
with the gradient JiQ = ∂rSH(s,q,t)

∂qiQ
which describes the change in position

at a point along the Super-Helix related to the change in the curvature qiQ.
In this context it can intuitively be thought of as a transform from Cartesian
space to curvature space, in particular in the generalized force case, as visible
in e.g. equation 4.25. Using the Super-Helix reconstruction equation 4.22,
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it can be written

JiQ(s,q, t) =
∂rQ0

L (t)
∂qiQ︸ ︷︷ ︸
=0

+
Q̂−1∑
P=Q

∂

∂qiQ

[
nP‖

0,L(q, t)(`P ) + nP⊥
0,L(q, t)

sin(ΩP (q)(`P ))
ΩP (q)

+ ωP (q, t)× nP⊥
0,L(q, t)

1− cos(ΩP (q)(`P ))
ΩP (q)

]

+
∂

∂qiQ

(
nQ̂‖

0,L(q, t)(s− sQ̂
L ) + nQ̂⊥

0,L (q, t)
sin(ΩQ̂(q)(s− sQ̂

L ))

ΩQ̂(q)

+ ωQ̂(q, t)× nQ̂⊥
0,L (q, t)

1− cos(ΩQ̂(q)(s− sQ̂
L ))

ΩQ̂(q)

)
(4.30)

where Q̂ is the segment that s currently is in, i.e. s ∈ Q̂. This relation to
the segmentation means that the gradient assumes one of three considerably
different shapes depending on where s and Q̂ are (see Figure 4.4):

Figure 4.4: Change in curvature in segment Q affects all subsequent segments Q̂
but no preceeding ones. The segment SQ acts in a flexible manner while subsequent
segments are rigid, altogether giving the symbolic solution to the gradient three
distinct appearances depending on where it is evaluated.

for Q̂ < Q , the gradient is with respect to curvatures of a succeeding
segment, so JiQ(s,q, t) = 0
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for Q̂ = Q the gradient is with respect to the curvatures of the current
segment, so 4.30 simplifies to:

JiQ(s,q, t) =
∂

∂qiQ

(
nQ‖

0,L(q, t)(s− sQ
L ) + nQ⊥

0,L (q, t)
sin(ΩQ(q)(s− sQ

L ))
ΩQ(q)

+ ωQ(q, t)× nQ⊥
0,L (q, t)

1− cos(ΩQ(q)(s− sQ
L ))

ΩQ(q)

)
(4.31)

where ΩQ is a function of qiQ.

for Q̂ > Q , the gradient is with respect to curvatures of a preceeding
segment, so derivatives of the initial values of the current segment must be
included:

J̃iQ(s,q, t) =
∂

∂qiQ

[
nQ‖

0,L(q, t)(`Q) + nQ⊥
0,L (q, t)

sin(ΩQ(q)(`)Q))
ΩQ(q)

+ ωQ(q, t)× nQ⊥
0,L (q, t)

1− cos(ΩQ(q)(`Q))
ΩQ(q)

]

+
Q̂−1∑

P=Q+1

[
∂nP‖

0,L(q, t)
∂qiQ

(`P ) +
∂nP⊥

0,L(q, t)
∂qiQ

sin(ΩP (`P ))
ΩP

+
∂

∂qiQ

(
ωP (q, t)× nP⊥

0,L(q, t)
) 1− cos(ΩP (`P ))

ΩP

]

+
∂nQ̂‖

0,L(q, t)
∂qiQ

(s− sQ̂
L ) +

∂nQ̂⊥
0,L (q, t)
∂qiQ

sin(ΩQ̂(s− sQ̂
L ))

ΩQ̂

+
∂

∂qiQ

(
ωQ̂(q, t)× nQ̂⊥

0,L (q, t)
)1− cos(ΩQ̂(s− sQ̂

L ))

ΩQ̂

(4.32)

Note that only the first bracket holds Ω that depend on the current Q. Thus,
all succeeding terms are more easily differentiated. Grasping the concept of
these gradients - how information flows from segment to segment - is essen-
tial to understanding the Super-Helix dynamics.

Now we differentiate with respect to time t, assuming s ∈ SQ̂. Since
rSH = rSH(s,q(t), t), we obtain one explicit and one implicit dependence
on t. Thus the Chain Rule gives

ṙSH(s,q(t), t) =
drSH(t)

dt
+

N∑
Q=0

∂rSH(q(t))
∂qiQ

dqiQ

dt
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=
dr0

0,L(t)
dt

+
dnQ̂‖

0,L(q, t)
dt

(s− sQ̂
L ) +

dnQ̂⊥
0,L (q, t)

dt

sin(ΩQ̂(q)(s− sQ̂
L ))

ΩQ̂(q)

+
d
dt

(
ωQ̂(q, t)× nQ̂⊥

0,L (q, t)
) 1− cos(ΩQ̂(q)(s− sQ̂

L ))

ΩQ̂(q)

+
Q̂−1∑
P=0

[dnP‖
0,L(q, t)
dt

(`P ) +
dnP⊥

0,L(q, t)
dt

sin(ΩP (q)(`P ))
ΩP (q)

+
d
dt

(
ωP (q, t)× nP⊥

0,L(q, t)
) 1− cos(ΩP (q)(`P ))

ΩP (q)

]

+
Q̂∑

P=0

2∑
i=0

∂rSH(s,q, t)
∂qiP︸ ︷︷ ︸

JiP (s,q,t)

dqiP

dt
. (4.33)

Here we define ṙSH
exp as the “explicit” part of ṙSH ,

ṙSH
exp(s,q(t), t) =

dr0
0,L(t)
dt

+
dnQ̂‖

0,L(q, t)
dt

(s− sQ̂
L ) +

dnQ̂⊥
0,L (q, t)

dt

sin(ΩQ̂(q)(s− sQ̂
L ))

ΩQ̂(q)

+
d
dt

(
ωQ̂(q, t)× nQ̂⊥

0,L (q, t)
) 1− cos(ΩQ̂(q)(s− sQ̂

L ))

ΩQ̂(q)

+
Q̂−1∑
P=0

[dnP‖
0,L(q, t)
dt

(`P ) +
dnP⊥

0,L(q, t)
dt

sin(ΩP (q)(`P ))
ΩP (q)

+
d
dt

(
ωP (q, t)× nP⊥

0,L(q, t)
) 1− cos(ΩP (q)(`P ))

ΩP (q)

]
(4.34)

and ṙSH
imp as the “implicit” part,

ṙSH
imp(s,q(t), t) =

Q̂∑
P=0

2∑
i=0

JiP (s,q, t)q̇iP . (4.35)

We can see how the initial values (gi(t))i=0,1,2 and h(t) enter every time
derivative through the first term of the sum in equation 4.34. The fact that
they do so in an affine manner is not obvious, but is further discussed in [2].

Differentiating a second time in t, the implicit dependence on t through
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q(t) complicates things even further:

r̈SH(s,q, t) =
d2r0

0,L(t)
dt2

+
d2nQ̂‖

0,L(q, t)
dt2

(s− sQ̂
L ) +

d2nQ̂⊥
0,L (q, t)
dt2

sin(ΩQ̂(q)(s− sQ̂
L ))

ΩQ̂(q)

+
d2

dt2

(
ωQ̂(q, t)× nQ̂⊥

0,L (q, t)
) 1− cos(ΩQ̂(q)(s− sQ̂

L ))

ΩQ̂(q)

+
Q̂−1∑
P=0

[dnP‖
0,L(q, t)
dt

(`P ) +
d2nP⊥

0,L(q, t)
dt2

sin(ΩP (q)(`P ))
ΩP (q)

+
d2

dt2
(
ωP (q, t)× nP⊥

0,L(q, t)
) 1− cos(ΩP (q)(`P ))

ΩP (q)

]

+
Q̂∑

P=0

2∑
i=0

JiP (s,q, t)
d2qiP

dt2

+
Q̂∑

P=0

2∑
i=0

dJiP (s,q, t)
dt

q̇iP

+
Q̂∑

P=0

2∑
i=0

Q̂∑
P̂=0

2∑
j=0

∂2rSH(s,q, t)
∂qiP ∂qjP̂

q̇iP q̇jP̂ (4.36)

Approximation In a bold maneuver, the two last second order terms in
equation 4.36 were dropped, mainly due to time constraints and a wish to
avoid code bloat. However, unyielding instabilities in the test implemen-
tations involving these explicit second order terms indicate a sensitivity to
either accumulated roundoff error or some other numerical abberation. The
remaining second order term includes q̈iQ and is part of the implicit so-
lution of the system, and as such has an entirely different impact on the
equations. Either way, the ubiquitous dependencies on curvature velocities
suggest the dropped terms would at most contribute slightly to the motion
of the Super-Helix and not affect the steady-state solution. Considering that
the Euler-Lagrange equations essentially model a minimization problem [1],
using an analogy to the reasoning in section 4.3 also argues for dropping the
terms. As the matter is not finally settled, we would like to leave it open
for future investigation.

Similar to the first time derivative case in equation 4.33 we end up with
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an explicit part:

r̈SH
exp(s,q, t) =

d2r0
0,L(t)
dt2

+
d2nQ̂‖

0,L(q, t)
dt2

(s− sQ̂
L ) +

d2nQ̂⊥
0,L (q, t)
dt2

sin(ΩQ̂(q)(s− sQ̂
L ))

ΩQ̂(q)

+
d2

dt2

(
ωQ̂(q, t)× nQ̂⊥

0,L (q, t)
) 1− cos(ΩQ̂(q)(s− sQ̂

L ))

ΩQ̂(q)

+
Q̂−1∑
P=0

[dnP‖
0,L(q, t)
dt

(`P ) +
d2nP⊥

0,L(q, t)
dt2

sin(ΩP (q)(`P ))
ΩP (q)

+
d2

dt2
(
ωP (q, t)× nP⊥

0,L(q, t)
) 1− cos(ΩP (q)(`P ))

ΩP (q)

]
(4.37)

and an implicit one:

r̈SH
imp(s,q, t) =

Q̂∑
P=0

2∑
i=0

JiP (s,q, t)q̈iP (4.38)

4.2.3 Kinetic energy T, pt. 1

The kinetic energy is involved in two terms, d
dt

(
∂T

∂q̇iQ

)
and ∂T

∂qiQ
. To start

with the former, combining equations 4.33 and 4.26 and differentiating in
time gives

d
dt

(
∂T

∂q̇iQ

)
=

d
dt

[
∂

∂q̇iQ

(
1
2

∫ L

0

ρS
(
ṙSH(s,q, t)

)2
ds

)]
=

d
dt

[
ρS

∫ L

0

(
∂ṙSH(s,q, t)

∂q̇iQ
· ṙSH(s,q, t)

)
ds

]
(4.39)
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As apparent from equation 4.33, differentiating ṙSH wrt. q̇iQ only leaves the
term JiQ(s,q, t) from the double-sum, yielding:

d
dt

(
∂T

∂q̇iQ

)
=

d
dt

[
ρS

∫ L

0

(
JiQ(s,q, t)· ṙSH(s,q, t)

)
ds

]
= ρS

∫ L

0

JiQ(s,q, t)· r̈0ds

+ ρS

∫ L

0

JiQ(s,q, t)·
[d2nQ‖

0,L(q, t)
dt2

(s− sQ
L )

+
d2nQ⊥

0,L (q, t)
dt2

sin(ΩQ(q)(s− sQ
L ))

ΩQ(q)

+
d2

dt2

(
ωQ(q, t)× nQ⊥

0,L (q, t)
) 1− cos(ΩQ(q)(s− sQ

L ))
ΩQ(q)

]
ds

+ ρS

∫ L

0

JiQ(s,q, t)·
Q−1∑
P=0

[d2nP‖
0,L(q, t)
dt2

(`P )

+
d2nP⊥

0,L(q, t)
dt2

sin(ΩP (q)(`P ))
ΩP (q)

+
d2

dt2
(
ωP (q, t)× nP⊥

0,L(q, t)
) 1− cos(ΩP (q)(`P ))

ΩP (q)

]
ds

+ ρS

∫ L

0

JiQ(s,q, t)·
∑
jQ̂

JjQ̂(s,q, t)q̈jQ̂ds (4.40)

As discussed in section 4.2.2, the shape of the gradient JiQ(s,q, t) depends
on the piecewise constant curvatures. Since each sum in equation 4.40 con-
tains at least one gradient, the entire expression assumes the same kind of
piecewise appearance, making it very convenient to split the integrals into
N pieces (N as usual being the number of segments). In this way, each term
in the sums has its own initial values, including derivatives with respect to
previous segments. With the exception of the last term, all terms in 4.40
are of the form

∫
J·a[s,q, t] ds where a is some externally imposed vector

valued function given explicitly in terms of some or all of s, q and t. These
terms are appropriate for straightforward integration, either explicitly or -

27



“masterthesiseng” — 2007/6/8 — 14:28 — page 28 — #36

4.2. DYNAMICS CHAPTER 4. THE SUPER-HELIX MODEL

as in our case - symbolically. For example, the first term can be written

ρS

∫ L

0

JiQ(s,q, t)· r̈0ds = ρS

Q−1∑
Q̂=0

∫ sQ̂
R

sQ̂
L

0 ds· r̈0

+ρS

∫ sQ
R

sQ
L

JiQ(s,q, t) ds· r̈0 + ρS

N∑
Q̂=Q+1

[ ∫ sQ̂
R

sQ̂
L

J̃iQ(s,q, t) ds· r̈0

]
(4.41)

which holds three terms, each corresponding to one of the three cases for
JiQ(s,q, t) described in section 4.2.2. All of these single gradient terms
are stuck into the RHS “kitchen sink” vector A. For more involved a that
cannot be brought outside of the integral easily (e.g. those that contain
derivatives of initial values of the segments), the dot product is performed
symbolically before integration, leading to an extensive set of integral rou-
tines for all possible cases. The necessary time derivatives of n, r etc. are
computed recursively using equations 4.18 and 4.20, as further described in
chapter 5.

The last term in 4.40 is very important, as it is the only term in the equa-
tions that contains q̈. Again observing the cases for JiQ(s,q, t) from section
4.2.2, it can be expanded to∫ L

0

JiQ

∑
i′Q̂

Ji′Q̂q̈i′Q̂ds =

ρS

Q−1∑
Q̂=0

∫ sQ̂
R

sQ̂
L

0·
Q̂∑

P=0

2∑
i′

J̃i′P (s,q, t)q̈i′P ds

+ ρS

∫ sQ
R

sQ
L

JiQ(s,q, t)·
Q−1∑
P=0

2∑
i′=0

J̃i′P (s,q, t)q̈i′P ds

+ ρS

∫ sQ
R

sQ
L

JiQ(s,q, t)·
2∑

i′=0

Ji′Q(s,q, t)q̈i′Qds

+ ρS

N∑
Q̂=Q+1

∫ sQ̂
R

sQ̂
L

J̃iQ(s,q, t)·
Q̂−1∑

P=0,P 6=Q

2∑
i′=0

J̃i′P (s,q, t)q̈i′P ds

+ ρS

N∑
Q̂=Q+1

∫ sQ̂
R

sQ̂
L

J̃iQ(s,q, t)·
2∑

i′=0

Ji′Q̂(s,q, t)q̈i′Q̂ds

+ ρS

N∑
Q̂=Q+1

∫ sQ̂
R

sQ̂
L

J̃iQ(s,q, t)·
2∑

i′=0

J̃i′Q(s,q, t)q̈i′Qds (4.42)
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Here the terms get more numerous, due to the involvement of two gradients.
We take the summation signs outside of the integrals to indicate that each
integration is performed separately, depending on the combination of gradi-
ents. Examining the expression closer, one in fact realizes that it would be
very suitable to write it in matrix form. For example, the different combina-
tions of gradients wrt. curvatures from the same and from different segments
map nicely to diagonal terms and cross terms, respectively. Indeed, this is
a central part of the Super-Helix derivations, and it is how the symmetric,
3N × 3N mass matrix M of the system is composed. By writing the whole
expression as a dot product, we obtain∫ L

0

JiQ

N∑
Q̂=0

2∑
j=0

JjQ̂q̈jQ̂ds = miQ· q̈(t) (4.43)

where miQ is a 3N row vector, each element i′Q̂ = [0..3N ] containing the
integral

∫
JiQJi′Q̂ ds, still computed in a piecewise fashion as described

above. Stacking 3N of these dot products, corresponding to all segments
and curvatures of the Super-Helix, we have the 3N row vectors miQ of
the mass matrix. Thus element (iQ, i′Q̂) describes some kind of relation
between the i:th curvature of the Q:th element and the i′:th curvature of
the Q̂:th element. It should be fairly straightforward to see how this implies
that the mass matrix is symmetric. All in all, we have factored out q̈ from
the kinetic energy, taking a big step towards enabling us to discretize the
system in time and solve for the change in curvatures. More on that in
section 4.2.8.

4.2.4 Kinetic energy T, pt. 2

For the second term of 4.25 involving kinetic energy, ∂T
∂qiQ

, the derivation is
similiar to that in equation 4.40:

∂T

∂qiQ
= ρS

∫ L

0

(
∂ṙSH(s,q, t)

∂qiQ
· ṙSH(s,q, t)

)
ds (4.44)

Alas, differentiating ṙSH(s,q, t) wrt. q does not work out quite as nicely as
q̇ did. Using equations 4.30 and 4.33 and the Chain Rule,

∂T

∂qiQ
= ρS

1
2

∫ L

0

∂

∂qiQ

( N∑
Q̃=0

2∑
k=0

JkQ̃(s,q, t)q̇kQ̃ + ṙSH
exp(s,q, t)

)
·

( N∑
Q̂=0

2∑
j=0

JjQ̂(s,q, t)q̇jQ̂ + ṙSH
exp(s,q, t)

)
ds (4.45)
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Since ∂q̇jQ′

∂qiQ
= 0 ∀i, j, Q, Q′, what remains is

∂T

∂qiQ
= ρS

1
2

∫ L

0

N∑
Q̃=0

2∑
k=0

N∑
Q̂=0

2∑
j=0

∂JkQ̃(s,q, t)
∂qiQ

q̇kQ̃·(
JjQ̂(s,q, t)q̇jQ̂ + ṙSH

exp(s,q, t)
)

ds (4.46)

As described in section 4.2.2, discarding second order terms is still a slightly
controversial issue. We did however proceed in this case as well, causing
the entire equation 4.46 to vanish from the equations. See the paragraph
following equation 4.40 for the reasoning behind this decision.

4.2.5 Potential energy U

For the potential energy U we use a linear spring force in curvature space,
with equilibrium in the natural curvatures κN

i and spring constants (EI)iQ

derived by Bertails et al. [3] from standard mechanical engineering formulae
for stiffness in bars:

∂U

∂qiQ
=

∂

∂qiQ

(
1
2

∫ L

0

2∑
j=0

(EI)j

(
κSH

j (s,q)− κn
j (s)

)2)
ds

=
∫ L

0

2∑
j=0

(EI)j

(
κSH

j (s,q)− κn
j (s)

)︸ ︷︷ ︸
=0 for s/∈SQ

(
∂

∂qiQ
κSH

j (s,q)
)

︸ ︷︷ ︸
=0 for i 6=j

ds

=
∫ sQ

R

sQ
L

(EI)i

(
κSH

i (s,q)− κn
i (s)

)
ds (4.47)

Here we assume κn
i is constant in s over the segment, just like κSH

i . For
any segment SQ,

∫
(EI)i ds = `Q(EI)i can be factored out into the 3 × 3

diagonal stiffness matrix KQ, and the κ:s be put in the 3-vectors qQ and
qn

Q, giving us:

∂U

∂qQ
= KQ(qQ(t)− qn

Q) (4.48)

For the entire system, these vector expressions stack to form

∂U

∂q
= K(q(t)− qn) (4.49)

with K still diagonal.
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4.2.6 Dissipation potential D

As stated in section 4.2.1, there are two different possible models of the
dissipation potential (4.28 and 4.29). Both essentially act as dampers, i.e.
a force in the opposite direction of the velocity (in curvature space), the
difference being that in 4.28 the term goes into the RHS A vector, like:

D(q, q̇, t) =
1
2

∫ L

0

γ

2∑
i=0

(
κ̇SH

i (s,q)
)2

ds

∂D(q, q̇, t)
∂q̇iQ

= γ

∫ L

0

2∑
j=0

κ̇SH
j (s,q)

∂

∂q̇iQ
κ̇SH

j (s,q)︸ ︷︷ ︸
=0 for i 6=j or s/∈SQ

ds

= γ

∫ sQ
R

sQ
L

κ̇SH
i (s,q) ds

Now the result for segment SQ can be written as a 3-vector:

∂D

∂q̇Q
= γ`Qq̇Q(t)

which, again, for the entire system amounts to

∂D

∂q̇
= γLq̇(t) (4.50)

where L is a 3N×3N diagonal matrix with triplets of the N segment lengths
`Q on the diagonal. The term from 4.29 on the other hand actually ends
up on the LHS, which has a considerable effect on the system (see section
4.2.9). Using the same pattern as in section 4.2.5,

D(q, q̇, t) =
1
2

∫ L

0

µ

2∑
i=0

(EI)i

(
κ̇SH

i (s,q)
)2

ds

∂D(q, q̇, t)
∂q̇iQ

= · · · = µ

∫ sQ
R

sQ
L

(EI)iκ̇
SH
i (s,q) ds

=⇒ ∂D

∂q̇
= µKq̇ (4.51)

4.2.7 External forces F

The external forces F(s, t) acting on the Super-Helix are written

F(s, t) = ρSg − νṙSH(s,q, t) + Fi(s, t) (4.52)
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where g is gravity, ν is an air resistance coefficient and Fi(s, t) are the inter-
action forces imposed by collisions and other external interaction with the
Super-Helix. In order to feed these Cartesian-space forces into the system,
each of them needs to be transformed into generalized forces through the
integral

∫ L

0
JiQ(s,q, t)· f ds. This integral is one of the keys to the global-

ness of the Super-Helix, as each force contribution is computed against all
curvatures in the model, not just the local ones.

When computing
∫

JiQ(s,q, t)·F(s, t) ds, the gravity force ρSg is constant
in space and time and goes outside of the integral. The air drag νṙSH(s,q)
is slightly more cumbersome. Using equations 4.33 and 4.34,∫ L

0

JiQ(s,q, t)· νṙSH(s,q, t) ds = ν

∫ L

0

JiQ(s,q, t)· (ṙSH
exp(s,q, t) + ṙimp(s,q)) ds

= ν

∫ L

0

JiQ(s,q, t)· ṙSH
exp(s,q, t) ds + ν

∫ L

0

JiQ(s,q, t)·
N∑

Q̂=0

2∑
j=0

JjQ̂(s,q, t)q̇jQ̂ ds

= ν

∫ L

0

JiQ(s,q, t)· ṙSH
exp(s,q, t) ds + miQ· q̇(t) (4.53)

where miQ again is the 3N row vector of the mass matrix M, correspond-
ing to qiQ. Using equation 4.34 and the approach to piecewise integration
presented in section 4.2.2, the first term is also computed symbolically.

Finally, the interaction forces Fi(s, t) need to be integrated numerically.
This was left as an input to the system, depending on which collision sys-
tem will be employed in the pipeline. However, an example implementation
is briefly presented in section 4.2.10.

4.2.8 Temporal discretization

In order to advance the system in time one not only needs to perform a
spatial discretization, but also a temporal one. From previous sections, we
have

d
dt

(
∂T

∂q̇iQ

)
− ∂T

∂qiQ
+

∂U

∂qiQ
+

∂D

∂q̇iQ
=
∫ L

0

JiQ[s,q, t]·F[s, t]ds (4.54)

which for the entire system now can be replaced by

ρSM[s,q]q̈ + K(q− qn) + µKq̇ = A[s,q, q̇] + Qint[s,q, t] (4.55)

which, thanks to the symbolic integration scheme presented previously in
this chapter, in fact is a spatially discretized system. The first term holds
the mass matrix and q̈ as derived from the first kinetic term of equation
4.54, while the second term holds the stiffness matrix and curvature dis-
placement as derived from the potential energy. µKq̈ was derived from the
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diffusion term. The the right hand side vector A holds all explicitly given,
but symbolically integrated, terms emanating from gravity and manipula-
tion of the root of the Super-Helix. It includes some amount of intertia from
the kinetic term and also air drag, and is given by

AiQ[s,q, q̇] =
∫ L

0

JiQ[s,q, t]·
(
− ρSr̈SH

exp[s,q, t] + νṙSH
exp[s,q, t] + ρSg

)
ds

+ νMq̇ (4.56)

Here r̈SH
exp and ṙSH

exp are the “explicit” parts of the time derivatives of rSH ,
as given by 4.34 and 4.37. The “implicit” parts constitute M. Finally, Qint

is the only numerically integrated term, dealing with external forces mainly
from collision response:

Qint
iQ [s,q, t] =

∫ L

0

JiQ[s,q, t]·Fi ds. (4.57)

Like Bertails et al. we choose to apply a semi-implicit Newton scheme to
this system. The term “semi-implicit” refers to the fact that some of the
occurrences of q are treated explicitly, while some are involved in the actual
implicit timestep. In this section, we have followed Bertails et al.’s example
and denote explicitly computated terms with brackets (i.e. [ ]) while all
other q:s are treated implicitly. In order to apply the scheme, we perform
the change of variables x = q and y = q̇. Inserting this into equation 4.55
yields

ẋ = y (4.58)

ρSMẏ + K(x− xn) + µKy = A + Qint. (4.59)

Rewriting ẋ and ẏ above in terms of first-order backward differences, and
rearranging, we get

xt+1 − xt

ε
− yt+1 = 0 (4.60)

M
yt+1 − yt

ε
+ µKyt+1 + Kxt+1 = (A + Q)t + Kxn (4.61)

Coupling these equations we obtain the 6N × 6N system(
I −εI

εK M + εµK

)(
xt+1

yt+1

)
=
(

xt

Myt + ε([A + Q]t + Kxn)

)
which can be reduced to a 3N × 3N system using the substitutions [2]

yt+1 =
xt+1 − xt

ε
∆x = xt+1 − xt

∆y = yt+1 − yt

∆y = −yt +
∆x

ε
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The final system becomes

(
M + εµK + ε2K

)
∆x = ε

(
Myt − ε

([
A + Qint

]
t
+ K(qn − xt)

))
(4.62)

4.2.9 Robustness and stability

Since all spatial integrals except for the ones related to collisions are per-
formed symbolically, any numerical error pertaining to the spatial integra-
tion will assumedly be in the order of the round-off error. This is one of the
big pay-offs from the tedious math derivations presented in this thesis.

Having been temporally discretized using a semi-implicit Newton scheme,
the system 4.62 is reasonably although not unconditionally stable in time.
[3] claims that 1/30s is a decent time step size, although we went even
further without seeing any time-related instabilities, save for in the exper-
imental collision detection. Even at 1/4s no oscillations or transients were
evident, as long as the LHS matrix remained well conditioned. However, be-
ing semi-implicitly integrated, the detail of the motion is closely related to
the temporal resolution. In a sense, taking too large time steps corresponds
to low-pass filtering the system, removing interesting high-frequency modes.

On the note of conditioning, the system does display a set of properties
that are critical to its stability and well worth examining. First and fore-
most, the mass matrix is not positive definite on its own. In fact, it has rank
2N in a 3N system. This is in broad terms caused by the assumption of an
infinitesimal cross-section area of the hair, causing a lack of torsional inertia
and no stress due to torque around the tangent. This means that torsional
modes propagate through the Super-Helix at infinite speeds, and that the
curvatures (κi)i=0,1,2 are not strictly independent [2]. Also, compared to the
Frenet-Serret equations discussed in section 4.1.1, which can describe any
curve locally using one torsion and one curvature, the Cosserat model has
two curvatures. This causes some amount of redundancy in the formulation,
but given the intervals of constant curvature and enforced initial material
frames it is crucial to provide sufficient flexibility in the model (see Figure
4.2).

Luckily, if the proper damping term is chosen (see 4.2.6), the implicit time
integration scheme (4.2.8) results in the left hand side (M + (εµ + ε2)K)
where the second term acts like a damper. The more dominant it is the
more similar to a diagonal matrix does the A become, essentially decoupling
the system and diminishing the energy contributed by the RHS forces. In
the limit the whole system reduces to ∆x = 0. Note that this is only the
case when using 4.28 for the dissipation potential term. When instead using
4.29, the final term ends up on the RHS and does not contribute to the
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damping of the system A, only of the particular solution x = Ab.

Unfortunately, the balancing point between mass matrix and stiffness ma-
trix, i.e. when the system gets negative eigenvalues and becomes indefinite,
occurs slightly sooner than wanted. The cause for this is unknown, and not
even extensive efforts to alleviate the problem gave any significant results.
The symptom is an undesirable stiffness in the hair strands and an exhag-
gerated tendency to return to the natural state. The only remedy, to instead
increase µ and thus the damping, leads to an attenuation of high-frequency
modes and an overly damped solution.

4.2.10 Collision handling

For the sake of verifying the implementation, a simple collision handling al-
gorithm was implemented. It is entirely based on penalty forces, and quickly
revealed the great difficulties related to handling collisions robustly in gen-
eralized coordinates. The quadratic reduction technique used by Bertails et
al. in [2] provided at least some measure of stability, although it is fairly
sensitive to the parameters involved. Once a penetration of depth δ is de-
tected, the normalized direction nc to the closest surface point is computed,
and the force in that direction is given by

if δ ≤ 0 FR = 0

if 0 ≤ δ ≤ δreg FR =
kcδ

2

2δreg
nc

else FR = kc(δ −
δreg

2
)nc

where δreg is the “regulation depth” and kc is a spring stiffness constant.
For a sphere of radius 1 a good value for δreg was empirically determined
to around 0.1, while kc depends on the weight-stiffness scaling of the hair
strand.

A spherical proxy object of variable size was implemented. For ease of
implementation, speed and improved stability (but at the obvious cost of
realism), only the endpoints of each strand were checked for collisions. The
results were encouraging, mainly in terms of the absence of bouncing. How-
ever a fairly tight timestep restriction applies; for any kind of stability the
empirically determined timestep was smaller than 1/128s to avoid spurious
force peaks due to exhaggerated penetration.

4.3 Modeling

Being formulated in a parameter space vastly different from Euclidean space,
Super-Helices are highly unintuitive to interact with directly, for example
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Figure 4.5: The proxy sphere has entered at considerable speed from the right
hand side, stopping halfway through the brush. Strands reach a steady state
without significant bouncing etc. Timestep size 1/128s.

in a modeling environment. Straightfoward manipulation of the curvature
values maps poorly to perceived change in shape in R3. For example, there
exist no “up” or “left” directions, only κ0, κ1 and κ2. Additionally each
change in curvature of a certain helical segment affects not only the shape
of that particular segment, but also the initial condition for all subsequent
segments, effectively imposing an affine transform on them. Hence there
exists no nice way to translate only a local neighborhood around a point,
but any change has a global effect.

Whereas the latter problem is not easily addressed - hard constraints are
inherently hard to impose on a system in generalized coordinates [26] - the
former one can be mitigated using standard non-linear minimization tech-
niques, cf. [20]. Consider a segment SQ. Translating a point on it through
R3 can only be achieved by altering the curvatures of either SQ, some pre-
ceeding segment SQ′ , Q′ < Q or a combination of those. As should be clear,
the curvatures of subsequent segments SQ′′ , Q′′ > Q have no effect whatso-
ever on SQ.

In general, the functional describing the error between the desired location
Y in Euclidean space of some point s on the Super-Helix and its current
location r(s,q) can be written

χ2(s,q) = (Y − r(s,q))2. (4.63)

Differentiating this functional with respect to the curvature qiQ, i = 0, 1, 2
of any segment SQ with its initial point s′ < s in the Super-Helix (see 4.30),
we obtain the Gradient JiQ(s,q) and Hessian HiQ,jQ(s,q). Writing the
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measured error Y − r(s,q) as ε(s,q),

JiQ =
∂χ2(s,q)

∂qiQ
= −2ε(s,q)

∂r(s,q)
∂qiQ

(4.64)

HiQ,jQ =
∂2χ2(s,q)
∂qiQ∂qjQ

= 2
∂r(s,q)

∂qiQ

∂r(s,q)
∂qjQ

− 2ε(s,q)
∂2J

∂qiQ∂qjQ
. (4.65)

As [20] explains, the second order term in HiQ,jQ does at best contain un-
correlated measurement noise - which in our case should be negligible - and
at worst destabilizing terms due to a poorly fitting model. Thus we, too,
follow the convention and ignore this term.

Figure 4.6: The yellow segment endpoint affected by a translational “force” f ,
subject to constraint in arclength and with freedom in curvatures of the preceeding
segment. The algorithm will find the optimal translation δr to accomodate the
requested translation in a for the user intuitive manner. Blue spheres are free
endpoints, grey sphere is the clamped initial point.

Now, assuming Y and r are sufficiently close (as is the case in our ap-
plication, see section 5.3.1), the functional χ2 is well approximated by the
quadratic form

χ2(q) ≈ γ − J·q +
1
2
q·H·q. (4.66)

Thus we can use the well known ([20])

qmin = qcur + H−1
[
−∇χ2(qcur)

]
(4.67)

to take a single leap in curvature space to a configuration that minimizes ε,
effectively bending the specified segment(s) to accommodate the requested
translation (see figure 4.6).
If ε is large enough for the parameter space to become poorly approximated
by 4.66, the application of 4.67 may need to be preceeded by steepest descent
steps. Resorting to the Levenberg-Marquardt method is one option for a
seamless blend between the two [20].
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Chapter 5

Implementation

Given the results in chapter 4, we now show how the actual implementa-
tion was performed. All Super-Helix mathematics was implemented as a
standalone library, and a user interface was provided using the Maya API.

5.1 Math

5.1.1 Symbolic integration

A major undertaking in this thesis was to implement the symbolic integra-
tion as briefly sketched in [3] and given some further - but still insufficient
- attention in [2]. As shown in 4.2, at the core of every explicit term in
the discretized Euler-Lagrange equations is a spatial integral in s over some
combination of the gradients JiQ(s,q, t), i = 0, 1, 2, Q = 1..N .

Examining the structure of the system, it was clear that many of the vari-
ables defined in sections 4.1.2 and 4.2.2 would be subject to extensive reuse.
For example, the normalized Darboux vector ω is present in nearly every
term in every integral. To enable some amount of code reuse we designed a
class hierarchy where each specific integral would inherit its necessary values
from base cases of simpler integrals. For example

∫
JiQ(s,q, t)JjP (s,q, t) ds,

where Q is the current segment and P is a previous segment, would inherit all
of its members from the base cases JiQ(s,q, t) and JiP (s,q, t). Virtual inher-
itance and explicit base class constructor calls were in many cases necessary
to avoid the “diamond problem”, i.e. ambiguous overloads (see Figure 5.1).
This problem would for example surface when JiQ(s,q, t) and JiP (s,q, t)
from the previous example both inherit the base class, containing declara-
tion and initialization of ω, Ω and other generic variables. Inheriting both of
these gradient classes into the class providing the

∫
JiQ(s,q, t)JjP (s,q, t) ds

integral required a virtual inheritance from the base class, and an explicit
call to the base class constructor from the integral constructor.
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Each integral requires certain initial values. In the case of
∫

JiQ(s,q, t)·F ds,

Figure 5.1: A typical “diamond” situation remedied by using virtual inheritance
and an explicit base class initialization call. The Jp and Jq abbreviations refer to
gradients with respect to curvatures of preceeding and current segments, respec-
tively.

integrating over segment SQ only requires the initial coordinate frame nQ
i,L

and the local curvatures qQ, whereas integrating the same gradient JiQ(s,q, t)
over subsequent segments S′Q, Q′ = Q + 1..N also requires the derivatives
of the initial frame of reference with respect to the curvatures of SQ. This
is a fairly intuitive result of the sequential nature of the Super-Helix, as
discussed in section 4.1.2. It should be obvious that any possible integral
over derivatives of the i:th segment with respect to any combination of pre-
vious curvatures requires initial values from at most i − 1 segments. As
a preprocessing step in each frame we use 4.30 and 4.32 to compute these
initial values and store them in the matrices (Di)i=0,1,2. For example, in
the matrix D0 containing derivatives of the initial tangent, element (Q,Q′)
holds the derivatives of the Q:th initial tangent wrt. the Q′:th segment’s
curvatures qjQ′ , j = 0, 1, 2. Actually, the combined gradients for ∀j form a
3 × 3 Jacobian matrix, since they describe the derivative of a vector wrt.
another vector. For optimization purposes, it follows from previous reason-
ing that all elements where Q < Q′ are indentical to 0, so the matrices Di

are all triangular.

With the initial value derivatives established, building the mass matrix M
and the generalized force vector A boils down to performing the segment-
wise integrals presented in e.g. equation 4.42. We initially used numerical
methods for differentiation and integration, but once the results were verified
we employed the symbolic powers of Mathematica, in order to increase
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stability, accuracy and efficiency.

Unfortunately, most - if not all - of the results from straightforward in-
tegration in Mathematica involve divisions by different powers of Ω, a fact
that calls for special treatment of the degenerate case qQ = 0 (i.e. a straight,
non-twisting curve). The typical way to deal with this would be to perform
some kind of interpolation over a vicinity around the origin, but that had
to be ommitted due to time constraints. Instead we observed that by going
from single to double precision in the computations, the singularity break-
point could be pushed sufficiently close to 0 for the singularities to rarely
bear significance in practical circumstances. It however calls for further
treatment before the implementation sees use in production.

5.1.2 Linear solvers

With the complete system as described in section 4.2.8 at hand, some consid-
eration was made when choosing a linear solver. The LHS matrix (onward
refered to as “A”) is strictly dense, symmetric and - for a proper mass-to-
stiffness ratio - positive-definite (see discussion in section 4.2.9). Due to the
density, straightforward application of a Preconditioned Conjugate Gradient
(PCG, see e.g.[22]) solver is not necessarily the best approach, as opposed
to sparse cases such as Possion’s equation. In fact, many texts recommend
the use of direct solvers for the dense case. However, as we showed in 4.2.9
the system at hand has some tendencies towards poor conditioning, so ro-
bustness was a key factor in deciding on a method.

Contrary to our assumptions, the Cholesky decomposition (LL) solver didn’t
outperform the PCG solver by any significant means, and being a direct
method it breaks down very disgracefully when the matrix becomes poorly
conditioned [20]. While performance is a key issue, robustness outweighs it
and so PCG should generally be prefered over LL.

The other competitor, Singular Value Decomposition (SVD), is perhaps the
definition of robustness among solvers. It is a fundamental part of Principal
Component Analysis (PCA), in which outlying components - corresponding
to small or negative eigenvalues - can easily be filtered out [20]. The way
SVD filters the solution differs from PCG though, and it turns out that
the excessive damping causes visual quality to suffer. This was a totally
unexpected result, and while a rigorous mathematical treatment is outside
of the scope of this thesis, our take is that the damping in PCA occurs in
a global fashion, which just so happens to remove many of the modes that
make the motion of the Super-Helix visibly interesting. Artifacts include
spurious speed decreases in all or parts of the Super-Helix, and curls and
bends that do not dissolve even under the influence of high-velocity motion.
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While the behaviour of standard PCG is undefined for indefinite systems, we
noticed that in the general case its degenerate behaviour was visibly more
pleasing than SVD. Since SVD is also slightly slower, we saw no reason
to prefer it over PCG in the standard case, but maintained an option to
switch to SVD to easily print out or analyze condition numbers for override
purposes.

5.2 Standalone library

The standalone library provides two principal C++ classes: SuperHelixModel
and SuperHelixDynamics, and the utility class SuperHelixUtil.

5.2.1 SuperHelixModel

At the core of the library is the SuperHelixModel class, which holds all es-
sential information on the kinematics of the Super-Helix, i.e. curvatures,
initial position and frame of reference. It also provides functions for recon-
structing the Super-Helix given the kinematics parameters, with the option
of providing a callback functor for discrete sampling of the curve. Spatial
integration is performed symbolically using straightforward application of
equation 4.22.

5.2.2 SuperHelixDynamics

SuperHelixDynamics deals with all dynamics. It provides an interface for
adding and removing SuperHelixModels to the dynamics computations, and
each time its member function integrate is called it performs an evolution
in time on all Super-Helices. It starts off by building the mass- and stiffness
matrices, and assembles and computes the RHS force vectors using both
symbolic and numeric integration. The A·x = b system is then defined, as
presented in section 4.2.8, as:

A = M + ∆tµK + ∆t2K (5.1)

b = ∆t
[
Mq̇ + ∆t

(
[Qint + A] + K(q0 − q)

)]
(5.2)

and the user-specified linear solver is employed to solve for δq = x. The re-
sulting δq would typically be used for advance collision detection in whatever
collision management will be added at a later time. Since SuperHelixDynamics
holds information on all Super-Helices currently active in the system, it will
easily be able to access that information to perform inter-collision checks
and corrections.

5.2.3 SuperHelixUtil

The SuperHelixUtil utility class contains various utility functionality for
the Super-Helix implementation, most prominently perhaps the endpointTranslation
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method which performs the translation of endpoints described in section 4.3.

5.3 Maya plugin

As Digital Domain uses Maya for most character work we decided to create
a Maya plugin to provide the Super-Helix functionality to the artists.

5.3.1 HelixShape

The HelixShape node is essentially a wrapper around the SuperHelixModel
and SuperHelixUtil classes (see 5.2), with additional integration done to
enable interaction with the modeling environment. It is based on the Maya
API’s MPxComponentShape class, and uses the spatial sampling hook pro-
vided by the SuperHelixModel to draw the Super-Helix in the OpenGL
drawing override. It also uses the component facilities to give direct ac-
cess to each segment of the underlying SuperHelixModel. Specifically,
the user can pick segments by selecting their assigned vertices, and di-
rectly manipulate their curvatures and lengths using the rotation and scale
tools, respectively. The requested transforms are parsed in the overriden
transformUsing method, by extracting the rotations and scales from the
homogeneous 4× 4 transform matrix which is provided by the API.

Figure 5.2: The translate tool located at one of the segment interfaces. Any
user manipulation is channeled to the SuperHelixUtil optimization methods for
endpoint translation.

To examplify the use of our novel modeling results presented in section 4.3,
we also extract the translation component of the transformUsing matrix
and use it to request segment endpoint translations from the SuperHelixUtil
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class. This enables the artist to use the translate tool to directly trans-
late the control vertices of the Super-Helix in a seemingly direct fashion
(see Figure 5.2). Under the hood the non-linear minimization techniques
of translateEndpoint are employed though, providing a bridge between
Cartesian and generalized coordinates.

5.3.2 HelixSolver

The HelixSolver node contains the SuperHelixDynamics implementation,
and accepts connections from one or multiple hair strands for input to the
dynamics simulation. The node exposes a number of global dynamics pa-
rameters, such as air drag, damping/friction, thickness etc. that can be
keyframed and controlled with curves like any Maya parameters.

HelixSolver publicly inherits MPxNode, the base Directed Acyclic Graph
(DAG) node class. The information flow through the Maya DAG goes solely
through plugs, which connect attributes. Being Acyclic, cyclic dependencies
are not allowed in the DAG, since they will cause infinite loops. A main
concept in the DAG is the “dirtying” and “cleaning” of attributes and plugs.
Only if an attribute is dirty will the compute function be called upon it, so
any branch of the tree that doesn’t depend on the information that is up-
dated (e.g. time) will not be evaluated but have its values read from cache
instead.

Figure 5.3: The “dirtying” flow through two DAG nodes. Time (a) is changed
by the user, dirtying attribute1, which through its plug (b) sets the state of at-
tribute2 to dirty. The plug (c) back to attribute3 is valid as long as there exists
no dependence (d) of attribute1 on attribute3.

The specifics can be found in the Maya API documentation, but the sig-
nificance of this property in our case is that in order for the HelixShape
to act both as input and output to the HelixSolver, we had to cheat
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Figure 5.4: With the attributes being dirtied in figure 5.3, the subsequent compute
calls are executed (recursively) in the order (a)-(c).

the system. Only having one data object for each Super-Helix would in-
fallably have caused cyclic dependencies, so we also created the “proxy”
attribute curvature which for each HelixShape holds an array of homo-
geneous point values corresponding to the three curvatures and length of
each segment. This proxy attribute is used for channeling the current state
of the SuperHelixDynamics’ internal SuperHelixModels to the HelixShape
nodes, which for each positive timestep insert them into their internal SuperHelixModel
objects for drawing and other user interface operations.

Figure 5.5: Timestep checks are used to regulate information flow through the
DAG, in order to avoid cycles. Only when a positive timestep is performed is the
integrator invoked.
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However, whatever modifications the user does to the HelixShape node -
which is the only visible representation of the Super-Helix - are overwritten
in subsequent time steps. Thus, a pair of extra commands, ddSetInitial
and ddSetNatural, were exposed, allowing the user to force the solver to
read the SuperHelixModel state directly from the shape and set its internal
representations accordingly. When any of these calls are issued though, a
new dirtying of attributes - and consecutive compute recursions - will be
(forcefully) performed, leading to cycles. As a remedy we added a number
of switches to the evaluation routines, directing the information through the
appropriate channels depending on if the timestep is non-zero or not (see
figure 5.5). In this way we mimicked the behaviour of most dynamics tools;
the user is able to at any point during simulation specify that the current
state is the initial or rest state.

5.4 Grooming in Maya

With a near-complete basic setup of Super-Helix hair and dynamics, we
now describe a few aspects of grooming that leverage and/or utilize the new
technology.

5.4.1 Hair placement

In order to streamline the integration into the modeling environment, we
used Maya Hair’s own follicle nodes as roots for the Super-Helices (see
Figure 5.6). The follicles provide an easy, efficient, way to access position
and normal on a surface based on UV coordinates. While the basic inter-
face only allows for direct selection of UV coordinates on mesh vertices,
any UV coordinates can potentially be used. To facilitate this we added a
noise function which randomly offsets the follicles in UV space, avoiding the
“Manhattan” appearance that otherwise would frequently occur.

While being far superior in performance to the PointOnSurfaceInfo node
for surface binding and normals, the follicles seem to be somewhat of a bot-
tleneck in terms of scalability in the amount of Super-Helices. Already at
a few hundred hairs, any translation or rotation imposed by e.g. keyframe
animating the head upon which the follicles sit will cause the framerate
to drop considerably. Whether this is an implementation flaw or a conse-
quence of some of the (superfluous) functionality that the follicles provide
is unknown. It seems apparent that the issue lies with the follicles though,
since using other means of translation and/or rotating a few hundred Super-
Helices doesn’t cause a similar framerate drop. We left this issue open for
future investigation.
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Figure 5.6: Maya Hair follicles (red) with Super-Helix hairs (yellow) attached.
Without UV noise, the follicles’ dependency on vertex positions often cause for
an unnatural placement. Model courtesy of Digital Domain.

5.4.2 Combing

A strong attraction in building an internal hair dynamics engine was to
aid the conception of new grooming tools, especially physically based ones.
The most popular one might be the virtual comb [18],[23],[17]. Thanks
to our extensive work to integrate the Super-Helix functionality into the
Maya DAG framework, the Super-Helices run in Maya’s interactive playback
mode without further ado. Interactive playback enables most controls and
interactions while the simulation is running, so implementing a virtual comb
to work in this setting does seem very feasible to the author. The artist
could for example work with a stylus pen to control the comb while using
their free hand to manipulate the position and orientation of the model, e.g.
by means of a 3D-mouse or a keyboard. The challenge that remains is to
implement a robust collision library and put some work towards increasing
the efficiency of the simulation. Some of the stylus work by Malik [15] and
the multi-resolution modeling by Kim and Neumann [13] could also be of
interest in this scenario.
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Chapter 6

Discussion

We described an existing feature film hair pipeline, and presented the full
derivations and implementation behind a new hair dynamics engine. The
Super-Helix model was used, which presented a pletora of challenges while
solving several problems in the previous hair solution. Here we summarize
and discuss the results of the work.

6.1 Results

This section summarizes and discusses the results of the project, with focus
on the positive aspects.

6.1.1 Dynamics

The motion of the Super-Helix is visually appealing even at low spatial res-
olutions. With only a few segments fairly complex, curly hairshapes are
simulated with impressive results. The Super-Helix model has some re-
markable properties; by utilizing generalized coordinates and Lagrangian
mechanics, one obtains a linear system of equations describing fairly small,
linear changes in curvature space that map to large, non-linear changes in
Cartesian space.

The performance is roughly comparable to Maya hair without inter-hair
collision at a few elements per strand, and scales equivalently. Due to the
density of the system matrix, the complexity is at least O(N3) in the num-
ber of segments though, so the resolution needs to be limited. A tenta-
tive collision handling implementation suggested robust collision handling is
plausible.
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6.1.2 User interface

A Maya implementation was presented, in the form of a shape node and
a solver node, to which several shape nodes can connect to partake in the
dynamics simulation. The user interface is streamlined with other Maya
tools, although still somewhat limited in flexibility due to time constraints.
Efforts were made to simplify the basic process of direct modeling, in partic-
ular by using gradients to solve for curvature configurations based on user
input in Cartesian coordinates. The Maya API enforces modularity and
extendability, which suggests support for future extensions to the plugin.

6.2 Limitations

While the Super-Helix model certainly proved to have its strong points, it
has a number of serious limitations that we present here.

6.2.1 Stiffness

The main drawback of the Super-Helix model, as it currently stands, is the
issue with unproportionate hair stiffness due to the conditioning of the final
discretized system. As shown in section 4.2.9, the system matrix A, given
by

A = ρSM + (µε + ε2)K (6.1)

is positive-definite only under certain conditions. Specifically, it needs to
be sufficiently diagonally dominant, a property governed by the balance
between mass and stiffness. Since M is dense and rank-deficient, the term
containing K needs to be given sufficient weight in the system in order to
ensure positive eigenvalues. Thus, the higher the density ρ, the higher either
the damping term µ or the cross-section area S needs to get. Increasing S
to counter-balance mass seems like a contradiction given equation 6.1, but
since the diagonal elements of K are quadratic in S (see section 4.2.5) the net
result is an increase in the diagonal elements of A. Ironically, this has the
total opposite effect of the “stiffness” problem in nodal models (as discussed
in section 2.3); we can make the hair infinitely stiff, while soft hair strands
cause problems. Thus the elimination of degrees of freedom in hair length
does not alone prove to be the magic bullet one might have hoped and
expected.

6.2.2 Lack of hard constraints

While we showed that stable collision handling is possible in the Super-Helix
model, hard constraints are inherently hard to implement in any model of
generalized coordinates. Since many recent advances in advanced collision
handling assume the feasibility of hard constraints, this deficit might prove
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to be an insurmountable obstacle when developing a production-level colli-
sion system.

6.2.3 Unintuitive parameter space

The gains in realism made by constraining the length of the Super-Helix
come at a great cost: it is very hard to facilitate intuitive manipulation of its
geometry, for example in a graphical modeling environment. Such a simple
task as selecting a control point somewhere along the curve and translating
it, leaving the rest of the Super-Helix unmodified, is complicated by the
sequential nature of the model. Optimization techniques as those presented
in this thesis are required to solve the problem, at the cost of robustness
and efficiency.

6.2.4 Implementation complexity

Another limitation of the Super-Helix model is the complexity of the math-
ematics and implementation, combined with the sparsity of previous work
and lack of documentation in general. While most established hair dynam-
ics models have seen extensive field use over the years and thus have been
iterated over and discussed ad infinitum, the implementation specifics of the
Super-Helix have basically yet to be filtered through the collective mind of
the CG community. The symbolic integration, which lends so much stability
and efficiency to the model, also introduces complexity, as the code exported
from Mathematica is nearly impossible to interpret and debug. One exam-
ple of this complexity is the uncertainty in the treatment of second order
terms; we chose to drop them in our implementation, but more work could
certainly have been done verifying this decision were the implementation
any simpler and less error prone to perform.

6.2.5 Degenerate cases

On the note of complexity, the degenerate case of Ω = 0 is another compli-
cating factor. As described in section 5.1.1, a completely straight, untwisted
hair strand will cause the Darboux vector to vanish, creating havoc in the
symbolic integral routines as nearly all of them have powers of the norm |Ω|
in the denominator. Due to time constraints we chose to settle for switching
to double precision and trusting that fate prohibits the singularity from ever
occuring in practice. We saw a couple of examples during testing however,
mainly visible as spurious twitching and abrupt losses of kinetic energy, both
of whom are obviously unacceptable in a production environment.

6.2.6 Management complexity

A problem that surfaced late in the project is the complexity associated
with managing hundreds or thousands of guide hairs in a modeling envi-
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ronment such as Maya. Already at a few hundred Super-Helices the Maya
GUI shows significant performance problems, with the Hypergraph and sim-
ilar views becoming frustatingly sluggish, and the native follicle nodes
consuming more than half of the processor cycles. Furthermore, the scene
hierarchy becomes quite hard to overview with hundreds of objects on the
same leaf level. While this would be a drawback in any naive strands-based
hair implementation, it certainly strengthens the case for efforts towards
either researching completely different models, or implementing accelerator
structures and new user tools to work around Maya’s limitations.

6.3 Conclusion

The goal of the thesis project was to derive, implement and examine the com-
plete dynamics of the Super-Helix model, as well as investigate the modeling
possibilities. Also, a software implementation open to extension and further
research was to be provided.

As chapter 4 shows, the derivations were performed in a rigorous and thor-
ough manner. Chapter 5 presents the implementation which consists of a
standalone library and a Maya plugin, both of which are sufficiently flexi-
ble and modular to fulfil the goal of the thesis. The modeling efforts were
presented in the shape of a novel approach to directly manipulating the
Super-Helix segments, bridging the gap between Cartesian and generalized
coordinates.

The focus of the thesis shifted significantly during the course of the project.
Very early on it became evident that the core mathematics and related im-
plementation details would take on a much more prominent role than origi-
nally expected, at the expense of collision handling, clumping/interpolation
and integration into the production pipeline. Yet the thesis fulfils the origi-
nal requirements, although with a slightly different distribution of focus.

The main contributions of the thesis project are the extensive mathematics
derivations and the novel modeling approach. Other contributions include
discussions and insight into the conditioning of the system, as well as a com-
plete implementation of the dynamics as a fully interactive Maya plugin.

6.4 Future work

While fulfilling its outset goals, this thesis also revealed numerous possible
improvements and extensions. We present a few of them here.
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6.4.1 Dynamics implementation

The stiffness problems described in sections 4.2.9 and 6.2.1 warrant further
investigations before the Super-Helix model can be viewed as completely
robust. Extensive tests of second order terms, and an investigation of the
conditioning of the LSH matrix of the system are both crucial to solidify
the understanding of the system. [2] hints at an affine relation between
accelerations in Cartesian coordinates and curvatures, and refers to a book
by Audoly and Pomeau titled “Elasticity and Geometry: from hair curls to
the nonlinear response of shells”, which may or may not have been published.

Also, the degenerate case described in section 6.2.5 needs to be dealt with
appropriately, for example using polynomial interpolation over the singular-
ity region. This is likely a very tedious task, but absolutely necessary to
guarantee stability in the entire parameter space.

6.4.2 Collision handling

We presented a basic collision detection and response algorithm in section
4.2.10. Obviously there is lots of room for improvement; implementing effi-
cient inter-hair collision detection using generalized cylinders (as suggested
in [2]) would be a good first step. The collision response could either use
the quadratic reduction technique mentioned in section 4.2.10 or perhaps
the varying restitution coefficient as proposed for rigid bodies by Guendel-
man et al. [8]. Work could also be done to implement an adaptive timestep
size, for example using backtracking. Bertails uses semi-implicit Newton
with a fixed timestep, but for any penalty-based collision scheme the nega-
tive impact of the high temporal resolution required to capture high-speed
interactions would probably diminish if periods of no contact were resolved
at lower resolution.

6.4.3 Alternate integration schemes

Implicit and semi-implicit schemes are good for guaranteed convergence
to a solution, which however doesn’t need to be the correct one. Also,
large timesteps cause excessive damping, with symptoms including persis-
tent bends and twists that disregard interactions and gravity [25]. Investi-
gating other integration schemes, such as high-order explicit schemes, sym-
plectic integrators (due to the relation to Hamiltonian mechanics) [10], or
even simulated annealing (to work around the conditioning problems) [20],
could prove worthwile.

6.4.4 Hair management

As discussed in section 6.2.6, already at a couple of hundred hairs the Maya
GUI becomes slow, unresponsive and almost unmanageable in several ways.
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Both the curve editor and the Hypergraph take several minutes to update
on a 3GHz Pentium 4 running only core services and Maya, and the amount
of nodes makes the whole scene hard to overview and manage (see Figure
6.1). Tools for managing big sets of hair (meaning at least several thousand
guide hairs) could be devised to leverage domain-specific features such as
spatial coherence, clumping etc. Storing all the hairs internally in one node
could improve efficiency but would also limit modularity and compatibility
with other Maya components.

Figure 6.1: Managing thousands of guide hairs in Maya can be an overwhelming
experience. On the left is the HelixSolver node, on the right are some four
hundred HelixShape nodes.

6.4.5 Other models

Given the complexity and debugging difficulty of the symbolic integrals, the
lack of hard constraints and the conditioning issues, it seems well-advised
to test a few other recent models before settling for the Super-Helix. Op-
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tions include rigid multi-body serial chains using Lagrange multipliers and
hybrid methods using implicit integration. Transparently providing a fall-
back method in case the Super-Helix model fails or using different models
for different hair types are two options.

However, were one to address the more pressing issues discussed here, the
Super-Helix model is a relatively elegant and robust take at hair dynamics
simulations, with a solid foundation in classical mechanical engineering. It
represents a breath of fresh air into the CG community at large and is likely
to see numerous applications and extensions over the upcoming years, not
only in hair modeling and dynamics.
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