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Figure 1: Extending a sparse signed distance �eld from the narrow band of a level set sphere, into an overlapping mask de�ned as a bunny.
Le�: Surfaces of the overlapping (green) sphere and the (red) bunny, act as respectively the boundary condition and mask for our Sparse and
Parallel Fast Sweeping Method. Middle: Illustration of the leaf nodes of the underlying sparse VDB trees. Right: Orthogonal cross-sections of
the extended sparse signed distance �eld. Note that while these cross-sections are dense, the volumes are sparse. �e bunny has an e�cient
voxel resolution of 628x621x489 and the extended level set function took about two seconds to compute on a workstation with 24 CPU cores.

ABSTRACT
We present a new e�cient algorithm for computing signed distance
�elds by means of the Fast Sweeping Method. Unlike existing
algorithms ours is explicitly designed to explore the bene�ts of
sparse (vs dense) grids as well as concurrency, i.e. mutli-threading.
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MOTIVATION
Signed distance �elds (SDFs) are fundamental to numerous ap-
plications across many di�erent disciplines, including of course
computer graphics. To mention just a few such examples consider
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most level set applications, velocity extension, and collision de-
tection. Our driving application was an e�cient way for artists
to perform a�ribute transfer from one surface onto a background
grid or even another surface. As it turns out, this hinges on a fast
algorithm to compute a sparse SDF in a user-de�ned sub-space
given �xed boundary conditions.

Mathematically speaking, SDFs are Euclidean distance functions,
ϕ (~x ), which are solutions to the Eikonal equation, ��∇ϕ (~x )�� = F (~x ),
with a unit speed function, F (~x ) = 1, and speci�c boundary condi-
tions, {~x |ϕ (~x ) = 0}. Given the ubiquity of SDFs it is only natural
that several di�erent algorithms have been proposed to solve the
Eikonal equation. Of these the most celebrated is arguably the Fast
Marching Method (FMM) [Sethian 1996] which is closely related to
Dijkstra’s algorithm. A less well known, but computationally supe-
rior algorithm, is the so-called Fast Sweeping Method (FSM) [Zhao
2004] which o�ers O(N ) vs O(N logN ) time complexity where N is
the number of grid points for which the Eikonal equation is solved.

Recent years have seen the advance of a sparse grid dubbed
VDB[Museth 2013], which is a compact data structure and toolset
for high-resolution volumetric e�ects typically encountered in
movie production. Since its open source release in 2012, as Open-
VDB1, it has been adopted by many of the major third-party renders
and tools in the VFX industry. �us, it should come as no surprise
that it is highly desirable to have e�cient algorithms for computing
and extending SDFs on non-dense grids like VDB. While FMM is
easily adopted to sparse grids, it is challenging to parallelize since

1h�p://www.openvdb.org
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it typically employs a dynamically updated min-heap tree data
structure. Conversely FSM is relatively easy to multi-thread, e.g. by
means of domain-decomposition, but to the best of our knowledge
it has never been re-formulated to take full advantaged of sparse
grids. �is dichotomy is precisely what motivated our work.

DENSE FAST SWEEPING METHODS
Fast Sweeping Methods take point of reference in some well known
facts about the the Eikonal equation, namely that it is a non-linear
hyperbolic partial di�erential equation that can be solved numeri-
cally a by means of the following single-sided (so-called up-wind)
�nite di�erence scheme due to Godunov

max (ϕ (i, j,k ) −min(ϕ (i − 1, j,k ),ϕ (i + 1, j,k )), 0)2+ (1a)

max (ϕ (i, j,k ) −min(ϕ (i, j − 1,k ),ϕ (i, j + 1,k )), 0)2+ (1b)

max (ϕ (i, j,k ) −min(ϕ (i, j,k − 1),ϕ (i, j,k + 1)), 0)2 = ∆h2 (1c)

where ϕ (i, j,k ) denotes the discretization of ϕ (~x ) at the grid point
~x = (i∆h, j∆h,k∆h), and ∆h is the uniform spacing of grid points.
Eq. (1) is a quadratic equation in ϕ (i, j,k ) that can be solved locally
using standard techniques. It should be evident that it couples
the values at the grid point (i, j,k ), ϕ (i, j,k ), with its six nearest
neighbor points along the axial directions (possibly not all at the
name time). As in the original implementation of FSM, [Zhao 2004],
the grid values, ϕ (i, j,k ) are initialized to the boundary values{
~x |ϕ (~x ) = 0} where available, and is set to ±∞ everywhere else,

where the sign is derived from the boundary values.
Due to the hyperbolic nature of the Eikonal equation, informa-

tion can arrive at a given grid point from any direction, and it is
exactly the job of the Godunov scheme, Eq. (1), to “automatically
select” the correct direction by selecting the closest neighboring
grid points, i.e. the ones with the minimum value, since this exactly
corresponds to the Euclidean distance to the known values de�ned
by the boundary conditions. �is observation is the crux of the
FSM [Zhao 2004] which leads to an iterative Gauss-Seidel method
where Eq. (1) is solved repeatedly by alternating sweeps (hence
the name) over the grid points, (i, j,k ) that covers all the possible
groupings of directions from which information can �ow on the
computational grid. In 3D this corresponds to 23 = 8 directions
(or sweeps), which is su�cient for a global solution to the Eikonal
equation if the characteristic directions are not crossing, i.e. no
shocks. However, within each such a sweep the grid points are
solved for in a �xed sequential order, ultimately resulting in a se-
quential algorithm with a computational complexity that is linear
in the number of grid points.

In the case of dense grids it is fairly easy to achieve a parallel
FSM algorithm, for instance by means of domain-decompositions
and halo-exchanges as outlined in [Zhao 2007]. More recently [De-
trixhe et al. 2013] made use of an interesting observation �rst noted
in the original publication of [Zhao 2004] (c.f. �gure 4.1(a)), namely
that the domain of dependency of grid points within a given sweep
direction is grouped in dense planes angled relative to the three
axial directions. �is can be seen as a consequence of the fact that
the up-wind �nite di�erence stencil employed in Eq. (1) only in-
volves grid points in the three axial directions, and thus solutions
are independent between neighboring grid points that are o�-axis.
[Detrixhe et al. 2013] utilized this to visit grid points arranged in

slices through the a dense volume, and then process them concur-
rently as in [Zhao 2004]. Since they also assumed the computational
grid to be dense, de�ning these planes was relatively easy, and in
the end the �nal algorithm, while elegant, was surprisingly close
the original implementation in [Zhao 2004].

OUR SPARSE FAST SWEEPING METHOD
�e observations outlined above form the foundation for our work,
but unfortunately the leap from dense grids to sparse grids is not
trivial. For starters, how to e�ciently determine the correct order-
ing of the sparse grid points that corresponds to the eight sweep
directions, as well as the grouping of grid points with independent
domains of dependency, which facilitates parallel computation?

Our solution, which was developed and optimized speci�cally for
the OpenVDB sparse data structure makes use of a new thread-safe
paged data structure to concurrently de�ne the sparse grid points, as
well as fast sorting algorithms that e�ectively achieve the grouping
of grid points into the independent planes �rst noted in [Zhao
2004] and later utilized in [Detrixhe et al. 2013] for dense grids.
Speci�cally, we sort the sparse grid points (i, j,k ) based on four fast
to compute sort-keys, (i+j+k ),(i+j−k ),(i−j+k ), and (i−j−k ), that
de�ne sweeping planes in which solutions to Eq. (1) are independent
and therefore can be processed concurrently. �is new sorting step
incurs a relatively small overhead since it can be implemented as an
unstable parallel sort, and a single sort can be reused for two sweep
directions, i.e. only four sorts are required to perform all eight FSM
sweeps in three spatial dimensions. We pay careful a�ention to
all our data structures and algorithms to ensure that they are fully
multi-threaded, and have observed good scaling for most practical
examples. We note that while our algorithm operates directly on
the sparse VDB data structure (with no need for deep copies or
intermediate value bu�ers) it should also be applicable to other
sparse grids. Finally, our algorithm allows for user-de�ned masks
of sparse grid points that restrict the SDF computations to regions
of interest, further localizing and improving its performance.

CONCLUSION
We have developed a new concurrent algorithm for solving the
Eikonal equation on sparse grids, that is when both the boundary
condition, {~x |ϕ (~x ) = 0}, and the solution (SDF) to ��∇ϕ (~x )�� = F (~x )
are represented on grids with sparse (vs dense) layouts of its com-
putational nodes. Given the ubiquity of sparse grids, like OpenVDB,
we believe this work to be of interest to other developers and practi-
tioners alike, and we plan to make a full implementation available.
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