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This article presents a generic framework for the representation and deformation of level set surfaces at extreme resolutions. The framework is composed of
two modules that each utilize optimized and application specific algorithms: 1) A fast out-of-core data management scheme that allows for resolutions of the
deforming geometry limited only by the available disk space as opposed to memory, and 2) compact and fast compression strategies that reduce both offline
storage requirements and online memory footprints during simulation. Out-of-core and compression techniques have been applied to a wide range of computer
graphics problems in recent years, but this article is the first to apply it in the context of level set and fluid simulations. Our framework is generic and flexible in
the sense that the two modules can transparently be integrated, separately or in any combination, into existing level set and fluid simulation software based on
recently proposed narrow band data structures like the DT-Grid of Nielsen and Museth [2006] and the H-RLE of Houston et al. [2006]. The framework can be
applied to narrow band signed distances, fluid velocities, scalar fields, particle properties as well as standard graphics attributes like colors, texture coordinates,
normals, displacements etc. In fact, our framework is applicable to a large body of computer graphics problems that involve sequential or random access to
very large co-dimension one (level set) and zero (e.g. fluid) data sets. We demonstrate this with several applications, including fluid simulations interacting
with large boundaries (≈ 15003), surface deformations (≈ 20483), the solution of partial differential equations on large surfaces (≈ 40963) and mesh-to-level
set scan conversions of resolutions up to ≈ 350003 (7 billion voxels in the narrow band). Our out-of-core framework is shown to be several times faster than
current state-of-the-art level set data structures relying on OS paging. In particular we show sustained throughput (grid points/sec) for gigabyte sized level
sets as high as 65% of state-of-the-art throughput for in-core simulations. We also demonstrate that our compression techniques out-perform state-of-the-art
compression algorithms for narrow bands.
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1. INTRODUCTION

Implicit modeling has been around almost since the dawn of com-
puter graphics. Such models represent geometry as iso-surfaces of
some volumetric scalar function. The fact that the geometry is de-
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fined by functions embedded in a higher-dimensional space accounts
for many of the attractive properties of implicit geometry. Implicit
geometry can easily change topology (merge or bifurcate) and sur-
face properties are readily derived from the embedding functions.
However, for many years implicit geometry was considered inferior
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to explicit representations like parametric NURBS and in particular
multiresolution subdivision meshes. While some might argue this
is still the case, the so-called level set method [Osher and Sethian
1988] has proven very successful for modeling and animation with
implicit and dynamic geometry. Graphics related examples that
use level sets include fluid animations [Foster and Fedkiw 2001;
Enright et al. 2002], geometric modeling [Museth et al. 2002; 2005],
fire [Nguyen et al. 2002], shape reconstruction [Zhao et al. 2001],
and metamorphosis [Breen and Whitaker 2001].

The level set method, originating from interface studies in applied
mathematics [Osher and Sethian 1988], provides a mathematical
toolbox that allows for direct control of surface properties and de-
formations. Although not required by the level set method, surfaces
are typically represented implicitly by their sampled signed distance
field, φ, and deformations are imposed by solving a time-dependent
partial differential equation (PDE) by means of finite difference (FD)
schemes [Osher and Fedkiw 2002; Sethian 1999]. To obtain a com-
putational complexity that scales with the area of the surface, as op-
posed to the volume of its embedding, several narrow band schemes
have been proposed [Adalsteinsson and Sethian 1995; Whitaker
1998; Peng et al. 1999]. These schemes exploit the fact that the zero
level set of φ uniquely defines the surface and hence the PDE only
needs to be solved in a narrow band around φ = 0. While these meth-
ods decrease the computational complexity, memory still scales with
the volume of the embedding. In recent years a number of improved
data structures have addressed this issue and dramatically reduced
the memory footprints of level sets, hereby allowing for the repre-
sentation of geometry at higher resolutions. This includes the use of
tree structures [Strain 1999; Min 2004; Losasso et al. 2004; 2005],
blocked grids [Bridson 2003], blocked grids on the GPU [Lefohn
et al. 2003], dynamic tubular grids (DT-Grid) [Nielsen and Museth
2004b, 2004a, 2006] as well as run-length encoding applied along a
single dimension [Houston et al. 2004] and hierarchically (H-RLE)
[Houston et al. 2006].

Despite the introduction of these data structures, current level set
representations still have their limitations. A significant issue con-
tinues to be the restriction on model resolution when compared to
state-of-the-art explicit representations. While it is not unusual to
encounter out-of-core meshes today with several hundred millions
of triangles,1 the same level of detail is yet to be demonstrated with
level set representations. Recent advances in level set data structures
have indeed increased the potential resolution of level set surfaces,
but they do not employ compression of the numerical values inside
the narrow band2 and they only work in-core. Consequently, cur-
rent level set methods are effectively limited by the available main
memory. Given the fact that level set and fluid simulations typically
require additional storage for auxiliary fields (e.g., particles, scalars,
velocities and pressure), this in turn imposes significant limitations
on the practical resolutions of deformable models. These facts have
motivated the work presented in this paper.

We have developed a framework that allows for representations
and deformations of level set surfaces, fluid velocities, and ad-
ditional fields at extreme resolutions. Our general approach is to
employ new application-specific out-of-core prefetching and page-
replacement schemes combined with new compression algorithms.
The out-of-core component allows us to utilize the available disk
space by streaming level sets to and from disk during simulation.

1The St. Matthew [Levoy et al. 2000] model for example has more than 186
million vertices and takes up more than 6GB of storage
2Note that though H-RLE is based on run-length encoding it does not com-
press inside the narrow band

Fig. 1. Fountain fluid animation using our out-of-core framework. See
section 9.3 for details.

In addition the compression component effectively reduces both
offline storage requirements and online memory footprints during
simulation. Reducing offline storage requirements is important in
level set and fluid simulations since they typically produce large
amounts of (temporal) data needed for postprocessing like direct
ray tracing, higher order mesh extraction, motion blur, simulation
restarts, and so on. While out-of-core and compression techniques
are certainly not new in computer graphics, to the best of our knowl-
edge we are the first to employ them for level set deformations and
fluid animations.

Out-of-core algorithms are generally motivated by the fact that
hard disks are several orders of magnitude cheaper and larger than
main memory [Toledo 1999], thus pushing the limits of feasible
computations on desktop computers. This trend continues despite
the introduction of 64-bit operating systems allowing for larger ad-
dress spaces, mainly due to the high cost of main memory. For
example, using our framework we have performed out-of-core scan
conversions of huge meshes on a desktop computer with 1 GB of
memory that would require close to 150 GB of main memory if run
in-core. Finally, for example, when algorithms are CPU bound, the
performance of carefully designed out-of-core implementations can
be close to in-core counterparts.

We have chosen to build our out-of-core and compression frame-
work on a custom implementation of the narrow band DT-Grid data
structure by Nielsen and Museth [2006]. This data structure has the
advantage that for surfaces, both the computational complexity and
storage requirements scale linearly with the size of the interface as
opposed to the volume of the embedding. Furthermore, DT-Grid
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can readily be extended to accommodate volumetric attributes for
fluid simulations in which case the scaling is limited to actual fluid
voxels as opposed to the usual bounding-box. The data structure is
particularly designed for sequential stencil access into the data struc-
ture. When streaming these data structures to and from disk this
becomes an important feature. Finally, DT-Grid separates
topology and numerical values, and more significantly has been
demonstrated to out-perform both octrees and the H-RLE [Houston
et al. 2006].

The out-of-core component of our framework is generic in the
sense that it can easily be integrated with existing level set model-
ing and simulation software based on for example DT-Grid, H-RLE,
or normal full grid representations. However, the sparse representa-
tions are preferable since they limit the amount of data that must be
processed. Consequently, existing level set simulation code is not
required to be rewritten in order to use our framework. Our com-
pression schemes are optimized for the DT-Grid representation, but
they can readily be modified to work on other narrow-band data
structures like the H-RLE. The framework is flexible since the out-
of-core and compression components can be integrated separately
or in combination. In addition, the out-of-core framework can be ap-
plied to narrow band signed distances, fluid velocities, scalar fields,
matrices, particle properties as well as standard graphics attributes
like colors, texture coordinates, normals, displacements, and so on.
No specialized hardware is required, but our framework does of
course benefit from fast disks or disk arrays.

Our framework allows us to both represent and deform level set
surfaces with resolutions and narrow band voxel counts higher than
ever before documented. We will also demonstrate that our out-of-
core framework is several times faster than current state-of-the-art
data structures relying on OS paging and prefetching for models
that do not fit in main memory. Naturally, our framework does
not perform as fast as state-of-the art data structures for deforma-
tions that fit in memory. However, we obtain a performance that
is as high as 65% of peak in-core performance. Remarkably, this
65% throughput (measured in processed grid points per second) is
sustained even for models of several gigabytes that do not fit in
memory. In addition, we show that our compression techniques out-
perform related state-of-the-art compression algorithms for com-
pressing partial volume grids, that is, narrow bands of volumetric
data.

We emphasize that while several of the techniques presented in
this paper are probably applicable for large-scale scientific comput-
ing, this is not the main focus of our work. Instead we are targeting
computer graphics applications—more specifically high-resolution
level set and fluid simulations—on standard desktop computers. All
the examples in this paper were produced on desktop machines with
1 or 2 GB of RAM. In spite of this we note that the grid sizes we are
able to achieve on desktop machines are high even when compared
to many super-computing simulations. For example, Akcelik et al.
[2003] employed an unstructured grid with 4 billion cells to sim-
ulate earthquakes on 3000 AlphaServer processors. In comparison
our largest Lucy statue scan conversion contains 7 billion grid points
in the narrow band.

To demonstrate the versatility and significance of our novel frame-
work we include several graphics applications. This includes high-
resolution fluid simulations interacting with large boundaries, high-
resolution surface deformations such as shape metamorphosis and
the solution of partial differential equations on 2-manifolds. Also,
to produce high resolution input to our out-of-core and compressed
simulations we have developed a new mesh to level set scan con-
verter that is limited only by the available disk space with regard to
both the size of the input mesh and the output level set. An explicit

list of contributions and an outline of this paper is given in the next
section.

2. CONTRIBUTIONS AND OUTLINE

Our main contribution is the development of a generic and flexible
framework for the representation and deformation of level set sur-
faces and auxiliary data out-of-core. Specifically, this framework
offers the following technical features:

—Near optimal page-replacement and fast prefetching algorithms
designed for sequential access with finite difference stencils used
during simulation. Our algorithms outperform state-of-the-art
level set data structures relying on OS paging and prefetching.

—Fast and compact compression schemes for narrow band level
sets that work both online and offline.

—Fast out-of-core particle level set data structures and compression
of particle data.

We also claim the following contributions based on novel appli-
cations of our framework:

—Partially out-of-core fluid animations. Using our framework we
represent boundaries, surface velocities as well as the particle
level set based fluid surface out-of-core, allowing us to simulate
fluids interacting with boundaries at extreme resolutions.

—Out-of-core data structures and algorithms for linear algebra.
—Out-of-core simulations of PDEs embedded on large 2-manifolds.

In particular we solve the wave equation on surfaces with more
than hundred million voxels.

—Out-of-core polygonal mesh to level set scan conversion. Our
method is only limited by the available disk space with respect to
the size of the input mesh and the output level set. For instance
we generate level sets with up to 7 billion voxels in the narrow
band.

The rest of this article is organized as follows: Section 3 de-
scribes related work in the areas of compression and out-of-core
algorithms. Next, Section 4 introduces the basic terminology and
structure of our framework. Sections 5 and 6 describe the out-of-
core and compression components of the framework in detail, and
Section 7 proposes an out-of-core particle level set method utilizing
compressed particles. Subsequently Section 8 justifies our claims
and demonstrates the efficiency of our framework. Finally, Section
9 demonstrates several applications of our framework, and Section
10 concludes the paper and proposes some new directions for future
work.

3. PREVIOUS WORK

Our framework is based on two techniques that are well known in
the field of computer science: compression and out-of-core methods.
As such there is a large body of related work and for the sake of
clarity we shall review this work as two separate topics. However,
we stress that our work stands apart from this previous work in
several ways. Most importantly we are the first to design and apply
these techniques to level set methods. Consequently, most of the
work described here is not directly related to ours.

3.1 Compression Methods

This paper deals with narrow bands of volumetric data. Mesh com-
pression methods on the other hand (see Kälberer et al. [2005] and
references therein compress only the surface itself and possibly the
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normals. Even though it is indeed feasible to compute differential
properties from meshes [Desbrun et al. 1999], this is generally not
an optimal storage format for implicit surfaces like level sets. The
reason is primarily that the map between the implicit level set and
the explicit mesh is not guaranteed to be bijective. Consequently,
important information is lost by converting to the mesh represen-
tation using Lorenson and Cline [1982]; Kobbelt et al. [2001]; Ju
et al. [2002], and this information is not recoverable by a subsequent
mesh to level set scan conversion. Primarily this regards higher order
differential properties. Methods with high compression ratios have
also been proposed for iso-surface meshes of volumetric scalar fields
[Taubin 2002; Lee et al. 2003; Eckstein et al. 2006]. However, again
information is lost for our purposes, and furthermore these methods
work only in-core and consider all grid points in the bounding box,
not just in a narrow band. Converting a narrow-band volume grid to
a clamped dense volume grid is straightforward and makes it possi-
ble to employ existing volume compression methods [Nguyen and
Saupe 2001; Ibarria et al. 2003]. However, for large dense grids this
approach is far from optimal in terms of compression performance,
memory and time usage. Note that the method for compressing sur-
faces represented as signed distance fields by Laney et al. [2002]
also operates on the entire volume. In particular the method em-
ploys a wavelet compression of the signed distance field and applies
an aggressive thresholding scheme that sets wavelet coefficients to
zero if their support does not include the zero crossing. Thus, this
method may actually discard information very close to the interface
hence preventing higher order accurate content.

The work on compression most related to ours is the method
for compressing unstructured hexahedral volume meshes by
Isenburg and Alliez [2002] and the work on volumetric en-
coding for streaming iso-surface extraction by Mascarenhas
et al. [2004]. Isenburg and Alliez consider in-core compression that
separately compresses topology and geometry. Mascarenhas et al.
later extended the method of Isenburg and Alliez to also compress
scalar grid values and additionally proposed an out-of-core decoder.
The method is applied to structured uniform grids and used in the
context of streaming iso-surface extraction. More specifically, the
grid is partitioned into partial volume grids in such a way that a
bound on the ratio between the number of grid cells loaded and the
number of grid cells intersecting any iso-surface is guaranteed. This
approach is not suitable for online, or batched, simulations. In partic-
ular, it is not feasible to employ Mascarenhas et al. [2004] to online
compressed simulations, since a stencil of neighboring grid points,
used for finite difference computations, must be available. Never-
theless, in the results section we compare our compression method
to Isenburg and Alliez [2002] and Mascarenhas et al. [2004] as an
offline compression method for reducing storage requirements of
the produced data.

3.2 Out-of-Core Methods

The field of out-of-core methods, also referred to as “external mem-
ory algorithms,” is large and actually dates back as far as the fifties—
not long after the emerge of digital computers. Out-of-core tech-
niques are applicable in a wide range of problems where data in-
tensive algorithms are ubiquitous. This includes image repositories,
digital libraries, relational and spatial databases, computational ge-
ometry, simulation, linear algebra, and computer graphics. For a
recent survey of the entire field, see Vitter [2001]. For the interested
reader we refer to Toledo [1999] for a specific survey in linear alge-
bra and simulation, and Silva et al. [2002] for a survey that focuses
on computer graphics.

In computer graphics, out-of-core methods have been applied
to a wide range of problems including iso-surface extraction
[Mascarenhas et al. 2004; Yang and Chiueh 2006], compres-
sion of meshes [Isenburg and Gumhold 2003] and scalar fields
[Ibarria et al. 2003], streaming compression of triangle meshes
[Isenburg et al. 2005], stream processing of points [Pajarola 2005],
mesh editing and simplification [Cignoni et al. 2003], and visualiza-
tion [Cox and Ellsworth 1997; Gobbetti and Marton 2005; Cignoni
et al. 2003].

Various approaches have been proposed for improving the access
efficiency to out-of-core multidimensional grids during computation
or for optimizing online range-queries in areas such as scientific
computing, computational fluid dynamics, computational geome-
try and visualization. This includes blocking techniques [Seamons
and Winslett 1996], reblocking, and permutation of dimensions
[Krishnamoorthy et al. 2004], as well as the exploitation of the prop-
erties of modern disks [Schlosser et al. 2005]. In computer graphics,
improved indexing schemes for full three dimensional grids were
proposed by Pascucci and Frank [2001] in the context of planar
subset visualization. The above techniques all deal with full grids
whereas we consider topologically complex narrow bands of grid
data. Furthermore, our method does not require the layout of data
on disk to be changed.

We are not the first to apply out-of-core techniques for online sim-
ulation. Pioneering work was done by Salmon and Warren [1997]
for N-body simulation in astrophysics. Their work was based on
trees and applied reordered traversals and a Least-Recently-Used
page-replacement policy for efficiency. More recently, an out-of-
core algorithm for Eulerian grid based cosmological simulation was
proposed by Trac and Pen [2006]. Global information is computed
on a low resolution grid that fits entirely in memory, whereas local
information is computed on an out-of-core high resolution grid tiled
into individual blocks that fit into memory. The individual blocks
are loaded and simulated in parallel for a number of time steps and
then written back to disk. These previous methods are, however, not
directly applicable to simulations on narrow band data structures of
level sets.

There is also a large body of work on general purpose page-
replacement and prefetching strategies developed for operating sys-
tems, scientific applications, data bases, web servers, etc. General
purpose algorithms for page-replacement must meet many require-
ments including simplicity, good performance and adaptivity to
changing and mixed access patterns. In contrast, the our proposed
techniques are application-specific and hence designed to work
close-to-optimal for particular problems. For an introduction to stan-
dard page-replacement techniques like Least Recently Used (LRU),
Most Recently Used (MRU) and Least Frequently Used (LFU)
see the excellent book by Tanenbaum [1992]. For these classical
techniques it is simple to derive examples where the given page-
replacement policy will not perform optimally for our application.
This is also the case for several more advanced schemes like LRU-K
[O’Neil et al. 1993], LFRU [Lee et al. 1999], 2-Queue [Johnson and
Shasha 1994], LIRS [Jiang and Zhang 2002], Multi-Queue [Zhou
et al. 2004], and FBR [Robinson and Devarakonda 1990]. This will
be motivated and explained in more detail in Section 5.

Another category of recent general purpose page-replacement
strategies exploits the regularity of the access patterns for a given
application. Based on the results of an access analysis, a specific
page-replacement algorithm is chosen. Work in this category in-
cludes the sequential and loop access pattern detection method,
UBM, by Kim et al. [2000], application/file-level characterization
of access patterns by Choi et al. [2000], Early Eviction LRU by
Smaragdakis et al. [1999], SEQ by Glass and Cao [1997], ARC
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Fig. 2. The generic framework. The colored boxes represent components that exclusively form part of the compression framework.

by Megiddo and Modha [2003], and CAR by Bansal and Modha
[2004]. However, the task of automatic access pattern detection is
difficult, and page-replacement decisions may actually hurt perfor-
mance when the estimate is incorrect [Brown 2005]. Furthermore, it
takes some time for these prediction methods to actually start work-
ing, as an analysis is required before the appropriate strategy can be
initiated.

Similarly to page-replacement techniques, a lot of effort has been
put into developing general purpose prefetching methods. Consult
Brown [2005] for a recent overview. Patterson et al. [1995], for ex-
ample, describe a general purpose resource management system that
balances hinted3 and unhinted caching with hinted prefetching using
cost-benefit analysis. There are several reasons why this framework
is not feasible for our application. For example, the access patterns
of our level set and fluid applications are not easily specified as hints
in their system. In addition, explicit timings for disk access and disk
driver times are required for the cost-benefit analysis. Brown [2005]
focuses on a fully automatic system for prefetching by combining
automatically generated compiler-inserted hints with a runtime layer
and extensions to the operating system.

In contrast to all the work mentioned above, we focus on one
particular application (level sets) for which the general structure
of the access patterns is known in advance. Hence we can exploit
this to develop a close-to-optimal strategy that is easy to implement
and lightweight, so as to incur minimal performance overhead by
avoiding costly online analysis.

Other examples of application-aware caches include the out-of-
core mesh of Isenburg and Gumhold [2003], the work on application
controlled demand paging for out-of-core visualization by Cox and
Ellsworth [1997], and the octant caching on the etree by Lopez
et al. [2004].

Finally, in-core scan conversion algorithms for converting trian-
gular meshes to signed distance fields have been in use for quite
a while [Mauch 2003]. However, to the best of our knowledge, no
previous attempts have been made at out-of-core scan conversion
algorithms. The work that comes closest to ours is the algorithm
for generating out-of-core octrees on desktop machines by Tu et al.
[2004].

4. OUT-OF-CORE LEVEL SET FRAMEWORK

An overview of our generic framework is illustrated in Figure 2,
and we will briefly describe the components from left to right: The
Model is represented as a level set sampled on a Grid. The Slice

3Hinted caching and prefetching accepts hints or directives from the user
that specify the nature of future requests, for example, sequential access and
so on.

Cache allows for fast implementations of both sequential and ran-
dom access to grid points in a local stencil. The Slice Cache stores
a number of 2D slices of the 3D Grid topology, values, or both
as illustrated with the bunny example. As the simulation or com-
pression progresses through the grid, these slices are modified and
replaced by the framework. If sufficient memory is available, the
Slice Cache is stored in main memory to increase performance, oth-
erwise it can be stored partially on the disk using the out-of-core
framework. The staggered rectangular boxes shown on the right il-
lustrate the fact that our framework separately stores the topology
and numerical values of the grid as well as any auxiliary fields. This
adds efficiency and flexibility to the framework: For example, since
topology typically requires less storage than the values, in some
cases topology can be kept in-core and only the numerical values
stored out-of-core. The separation of topology, values, and auxil-
iary fields also enables the Component Codecs to take advantage
of application specific knowledge to obtain good compression of
each of the separate components. The Slice Cache and the Com-
ponent Codecs together make up the compression component of
the framework. A Storage Handler next takes care of storing the
separate grid components either in memory or on disk. Finally, an
application specific Storage Cache, between the Disk and the Stor-
age Handler, implements our out-of-core scheme. Its function is to
cache and stream pages of grid values and topology to and from
disk. We emphasize again that the components for compression and
out-of-core data management can be combined arbitrarily (or omit-
ted) in our framework. Finally we note that our framework does not
make any assumptions on the amount of main memory available:
Level sets of any size can be processed as long as sufficient disk
space is available.

4.1 Terminology

For the sake of completion we shall briefly summarize the termi-
nology used throughout this paper, largely borrowing from Nielsen
and Museth [2006]. The DT-Grid data structure is inspired by the
compressed row storage format used for compact storage of sparse
matrices. The DT-Grid stores the topology and values of the narrow
band grid points in a compact form convenient for fast manipula-
tion and access during for example level set and fluid simulations.
In order to compactly represent the topology of the narrow band, a
3D DT-Grid consists of 1D, 2D, and 3D grid components as shown
in Figure 3(a). The 3D grid component consists of the grid points
in the narrow band, the 2D grid component is the projection of
the narrow band onto the XY-plane, and the 1D grid component is
the projection of the 2D grid onto the X-axis. Each grid compo-
nent has three constituents: value, coord, and acc. As depicted in
Figure 3(b), the value1D and value2D constituents link the 1D, 2D,
and 3D grid components together by storing indices that point to the
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(a)  (b)

Fig. 3. a) Illustration of the 1D, 2D and 3D components of a DT-Grid
representation of the Stanford bunny at 643 resolution. b) The 1D and 2D
components contain pointers to columns in respectively 2D and 3D, and
the 3D DT-Grid component stores the actual distance values of the level set
function.

first coordinate in a column in the coord constituent of the 2D and 3D
grids respectively. The value3D constituent stores the actual values
of the level set function in the narrow band.4 The coord constituent
in the nD grid component stores the nth coordinate of the first and
last grid point in each topologically connected component of grid
points in a column of the nD grid component. These are colored
green in Figure 3. The last component, acc, links the coord compo-
nent of an nD grid constituent to its value component by storing an
index pointing to the value component for the first grid point in each
connected component. It is a redundant construct provided merely
to speed up random access. In this article we refer to the value3D
constituent as the values and the remaining constituents as the topol-
ogy. All grid points are stored in (x, y, z) lexicographic order, and
navigation through the narrow band is provided by iterators that se-
quentially visit each grid point in this order. As shown in Nielsen
and Museth [2006], sequential access in lexicographic order allows
for a wide range of algorithmic constructions and optimizations.
Finally, to deform a level set and solve simulation PDEs using fi-
nite difference, fast access to neighboring grid points is paramount.
This is conveniently facilitated by employing stencils of iterators
that in turn allow for sequential stencil access with linear time
complexity.

To describe the I/O performance of the algorithms presented in
this paper we adopt the terminology of the Parallel Disk Model
introduced by Vitter and Shriver [1994]. In particular, we denote
the problem size by N , the internal memory size by M , and the
block transfer size by B—all in units of data items. For this work
we assume desktop machines with a single CPU (P = 1) and a
single logical disk drive (D = 1).

5. OUT-OF-CORE DATA MANAGEMENT

The Storage Cache component in Figure 2 utilizes two different out-
of-core data management schemes. For random access we employ
the standard LRU page replacement algorithm since it is acknowl-
edged as being the best general choice in many cases (Compare

4Note that in the case where the DT-Grid stores volumetric fields such as
velocities and pressure, the value3D constituent contains vectors or pressure
scalars.

most operating systems). However, for sequential stencil access we
have developed a new and near-optimal page-replacement policy as
well as a new prefetching strategy. In combination these schemes
reduce the number of disk blocks loaded during sequential stencil
access. We focus mainly on sequential streaming since a majority of
level set algorithms can be formulated in terms of sequential access
operations exclusively. This is true for all the examples presented in
this paper, with the only exception being ray tracing that inherently
requires random access.

As illustrated in Figure 4, a sequential stencil access pattern in a
narrow band data structure does not necessarily imply a sequential
memory or disk access pattern when data is laid out in contiguous
lexicographic order in memory or on disk. This characteristic be-
comes increasingly pronounced both in the case of larger level sets
where the 2D slices become larger and in the case of stencils that
include more grid points and hence span more 2D slices. Only data
in the primary encoding direction5 maps to contiguous locations on
disk or in memory. To address this problem we need to develop new
page-replacement and prefetching schemes.

Even without prefetching and page-replacement strategies, the
time complexity of a sequential stencil access pattern on the DT-
Grid is I/O-optimal. This is due to the fact that it requires only
a linear, O( N

B ), amount of I/O operations to do stencil-iteration,
which equals the lower bound for a sequential scan with respect to
asymptotic O-notation [Vitter 2001]. Sequential stencil access in
the worst case essentially corresponds to S sequential and simul-
taneous scans over the data, where S is the number of grid points
in the stencil. Likewise dilation and rebuilding of the narrow band
[Nielsen and Museth 2006] is also linear in the number of I/O oper-
ations. However, to increase performance in practice it is important
to minimize the actual number of loaded disk blocks. A straight-
forward I/O implementation will in the worst case result in loading
S N

B disk blocks. A lower bound is N
B disk blocks since we need

to access all grid points. Hence in practice S is a limiting constant
of proportionality. For a high order FD scheme like WENO [Liu
et al. 1994], a stencil with support for second-order accurate cur-
vature computations has S = 31, whereas for first-order upwind
computations, S = 7. As we will demonstrate in Section 8.1, our
page-replacement and prefetching techniques do in practice lower
the number of passes6 such that it comes closer to the lower bound.
This is the case even for large stencils such as WENO.

The optimal page replacement strategy [Tanenbaum 1992] for a
demand-paged system (i.e., no prefetching) is simple: If a page must
be evicted from the cache, it always picks the page that will be used
furthest in the future. This strategy is of course impossible to imple-
ment in practice except for processes where the demand-sequence
of pages is known in advance. Furthermore, since sequential sten-
cil access into the (x, y, z) lexicographic storage order of the data
structure differs from sequential access into the underlying blocks,
or pages, of data on disk, the replacement issue is nontrivial. As
argued previously, existing general purpose page-replacement tech-
niques are not well suited for this access pattern. Consider for ex-
ample the LRU replacement strategy. In some situations LRU will
perform quite well for stencil computations. However in contrast
to the replacement strategy we propose in this paper, LRU will in
other cases perform far from optimally, which may degrade its over-
all performance: Figure 4 shows a 2D grid, a stencil consisting of
five iterators, and the corresponding positions on the paged disk.

5For (x, y, z) lexicographic order this is the z direction.
6Measured as the ratio of the number of loaded disk blocks to the total
number of disk blocks with data.
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Fig. 4. Outline of a stencil consisting of five grid points (0-4) as well as a cache slice and the corresponding paged memory/disk layout. In this example all
grid points are occupied with data and each page is two grid points long. The pages in memory are outlined in white and the others in black. c denotes a page
clean page that has not yet been written to, and d is a dirty page that has been written to.

We assume that each iterator in the stencil contains the id of the
page it currently points to. Additionally, each iterator is denoted a
reader and/or writer depending on the type of access it provides.
Assume that page five is the least recently used page. When iterator
four moves forward, it generates a page fault (i.e., the page does not
exist in memory) as page eight is not in memory. As a result page
five is evicted to make room for page eight. Next consider that iter-
ator one moves forward into page five which was just evicted. This
generates a new page fault and page five is loaded again. Similar
to the LRU strategy it is possible to construct examples where all
other existing non-analysis-based page-replacement strategies, that
we are aware of, fail. On the other hand the analysis based algo-
rithms face other problems such as the fact that they need to detect
a certain access pattern before they start working properly. In Sec-
tion 8.1 we benchmark the LRU strategy in the context of stencil
computations and compare to our methods.

Given that our framework is application specific, we exploit
knowledge about the domain to obtain a replacement strategy that
comes close to the optimal. Our strategy is verified in Section 8.1.
Our page-replacement and prefetching strategy accommodates the
following three essential design criteria:

—The number of disk I/O and seek operations is heuristically min-
imized. In particular seeking is expensive on modern hard drives.

—The disk is kept busy doing I/O at all times.

—CPU-cycles are not wasted by copying pages in memory or wait-
ing for disk I/O to complete.

The Storage Cache, that implements the page-replacement and
prefetching strategies, only depends on two parameters: The num-
ber of pages and the page size. In section 8.1 we provide some
benchmarks indicating how these parameters affect performance
and the page-hit-ratio.

5.1 Page-Replacement

Since the out-of-core framework stores and streams the grid values
and topology in lexicographic order, the neighboring stencil iterators
may be physically far apart as explained earlier and illustrated in
Figure 4. The fundamental observation, however, is that during each
increment of the stencil, the iterators in the stencil in most cases
move forward at identical speeds. This property can only be violated
at the boundaries of the narrow band where some iterators may move
more grid points than others in order to be correctly positioned
relative to the center stencil grid point.

Given this observation, the optimal page replacement strategy
(which is invoked if the maximal number of pages allowed already
reside in memory) is first to check if the page in memory with the

lowest page-id does not have an iterator pointing to it. In that case we
evict and return this page, and if the page is dirty it is first written to
disk. In Figure 4, for example, page three can safely be evicted as it
will not be used again in the future since all iterators move forward.
If the first page in memory does indeed contain an iterator, the best
strategy is instead to evict the page in memory that is furthest away
from any of the iterators in the forward direction. This is the case
since the optimal strategy is to evict the page in memory that will
be used furthest in the future.

In Section 8.1 we verify that the above strategy is close to optimal
by comparing it to the optimal strategy that we computed in an offline
pass from logged sequences of page requests.

5.2 Prefetching

Prefetching is performed by a separate high-priority I/O thread con-
tained in the Storage Cache. Using a separate thread to some extent
hides I/O latency since this thread will wait for the I/O operations
to complete.

The I/O thread iteratively performs the following steps in prior-
itized order, and as soon as a step is satisfied, continues from the
beginning. The strategy is to prefetch pages into memory and evict
pages that are no longer in use. The thread performs at most one
read and one write operation per iteration. The individual steps are:

(1) Prefetching. The I/O thread first checks if all pages that will
be accessed by the stencil iterator are already in-core. In par-
ticular this is the case if all pages ahead of the iterators in the
stencil are in-core. If this is the case, no prefetching needs to be
done. In addition the prefetching of a page should occur only
if it does not result in the eviction of a page that is closer in
the forward direction to any iterator in the stencil. This is in
accordance with our replacement strategy. To determine which
page to prefetch we use a variation of the elevator algorithm
Tanenbaum [1992]. In our context the elevator algorithm main-
tains a position, which coincides with the position of an iterator
in the stencil, and prefetches the nearest page in the forward di-
rection that is not currently in-core. The variation of the elevator
algorithm we employ always moves in the forward direction to
the next iterator position and wraps around to continue from the
beginning when the end of the data is reached. As illustrated
in Tanenbaum [1992] in the context of disk arm movements,
this strategy heuristically results in fewer disk seek operations
and ensures that no page requests are left unserviced for long
periods of time. Note that if all pages between two iterator
positions are already in-core, for example, positions 1 and 3
in Figure 4, no pages need to be prefetched in this interval.
In this case our elevator algorithm will move more than one
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(a)  

(b)

Fig. 5. a) The values of the value1D constituent as a histogram. b) The
difference between consecutive value1D values as a histogram.

iterator position forward in order to locate the next page to be
prefetched.

(2) Write-Back. If no page was prefetched, the I/O thread will
attempt to write the dirty pages to disk that will not be written
to again during the sequential stencil access. This is done to
avoid first writing and evicting another page before prefetching
a page in front of an iterator in step 1 above. Write-Back is
accomplished by first checking to see if there exist any dirty
pages in the cache. If this is the case, the I/O thread locates
the first dirty page in the cache. If no write iterators point to
the dirty page, it is written to disk. In some situations it is
advantageous to limit Write-Back such that it is only invoked
if the number of pages in the cache is above some threshold.
This can ensure for example that if a file fits entirely in-core it
will be kept in memory immediately ready for future access,
and disk resources can hence be utilized for other purposes.

(3) Idle mode. If no read or write operations were performed, the
I/O thread sleeps until an iterator enters a new page.

The given strategy outperformed a prefetching strategy that made
its prefetching decision based on which iterator was closest to a page
not residing in memory (in the forward direction) and in addition
serviced page faults immediately. We believe that this result is due
to an increase in the number of disk seek operations for the latter
approach. In practice we use a dynamically expanding hierarchical
page table to store the pages. We also employ direct I/O to prevent
intermediate buffering by the OS. Hence we more effectively exploit
direct memory access (DMA) and save CPU cycles and memory-
bus bandwidth for numerical computations. We finally note that the
Storage Cache is not dependent on any hardware or OS specific
details, except that the page size is typically a multiple of the disk
block size. Nor do we manually align data to fit into cache lines or
similar optimizations.

6. COMPRESSION ALGORITHMS

The compression framework can be applied both online during sim-
ulation and offline as a tool for efficient application specific storage
of simulation data amenable to further processing in a production
pipeline. Using the proposed compression framework it is possible
to compress large level set grids out-of-core with a low memory foot-
print. The Component Codecs we propose in this paper are based on
prediction-based statistical encoding methods and separately com-
press the topology and values of the grid. The term prediction-based
refers to the fact that the current symbol is predicted by previously
observed symbols and it is in fact the difference between the true
symbol, and the prediction that is encoded. Statistical compression

(a)  (b)

Fig. 6. a) The values of the value2D constituent of the 2D grid component
as a histogram. b) The difference between two consecutive value2D values
as a histogram.

methods assign probabilities to each possible symbol and in the en-
coding process symbols with higher probability are encoded using
fewer bits. The average bit-length of a compressed symbol is ex-
pressed by the so-called entropy of the probability distribution. See
Salomon [2007] for an introduction to and overview of statistical
compression methods. In practice we use the fast arithmetic coder
described by Moffat et al. [1998] combined with optimized adaptive
probability tables. Adaptive probability tables assign probabilities
to symbols based on the frequency with which they are observed in
the previously processed stream of symbols [Salomon 2007]. While
the adaptive statistical encoding methods are ideal for sequential
access, random access is typically not feasible into a statistically
encoded stream of data. This is because the encoding of a single
element depends on all elements encountered before that. To rem-
edy this somewhat, synchronization points could be inserted into
the stream of data. Naturally this comes at the cost of decreasing
compression efficiency. As discussed previously we use sequential
algorithms and focus here solely on online as well as offline com-
pression using sequential access.

Next we describe how to compress the topology and the signed
distance field values of the grid. The topology is compressed loss-
less, whereas the values can be compressed in either a lossless or a
lossy fashion. Note that the signed distance field is the most typical
level set embedding, and that the topology component codecs pre-
sented in this section are specific for the DT-Grid. However, very
similar codecs can be applied to other sparse representations such
as the H-RLE [Houston et al. 2006].

6.1 Compressing the Topology

The value1D constituent of the topology consists of monotonically
increasing indices (Figure 5(a)) that point into the coord constituent
of the 2D grid component. The difference between two such consec-
utive values (Figure 5(b)) is twice the number of connected compo-
nents in a column in the 2D grid component, see the 2D grid com-
ponent in Figure 7(a). Due to the large spatial coherency in a level
set narrow band, this quantity does not usually vary much. To com-
press it, we encode this difference, that is, the number of connected
components per column, using a second order adaptive probability
model [Salomon 2007]. The value2D component has characteris-
tics similar to the value1D component as shown in Figure 6(a), and
the semantics of the difference between two consecutive values in
(x, y) lexicographic order is the same, see Figure 6(b). Hence this
constituent is also compressed using a second order adaptive prob-
ability model.
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(a)  (b)

Fig. 7. a) The 2D grid component of the 643 Stanford bunny DT-Grid.
The y-coordinates of the coord2D constituent are shown in green. b) A
close-up shows actual y-coordinate (red-brown) predicted by three previous
y-coordinates (blue).

The coord1D (x-coordinates) constituent of the topology is en-
coded using a single differential encoding and a zeroth-order adap-
tive probability model [Salomon 2007]. Typically the coord1D com-
ponent constitutes an insignificant percentage of the aggregate space
usage since it consists only of the end points of the connected com-
ponents obtained by projecting the level set narrow band onto the
X-axis. For example, only two x-coordinates are needed to store
the Stanford bunny, since it projects to a single connected compo-
nent on the X-axis. As a reference see Figure 3, where these two x
coordinates are marked in green in the 1D component.

The coord2D (y-coordinates) constituent of the topology consists
of the y-coordinates that trace out the boundary curves in the XY
plane of the projection of the level set narrow band. This is illus-
trated with green in Figure 7(a). Again due to the large amount of
coherency in the narrow band, these curves are fairly smooth. Hence
it is feasible to employ a predictor that estimates a given y-coordinate
from the y-coordinates in the (at most) three previous columns in the
XY plane. Figure 7(b) illustrates how the y-coordinates in three pre-
vious columns, shown in blue, are used to predict the y-coordinate
in the next column, shown in red-brown. In particular we use as
predictor the Lagrange form of the unique interpolating polynomial
[Kincaid and Cheney 1991] that passes through the y-coordinates in
the previous columns. Our tests show that higher order interpolants
tend to degrade the quality of the prediction.

Since the topology of these boundary curves is not explicitly given
in the coord2D constituent, the curves become harder to predict. Re-
call that the coord2D constituent only lists the y-coordinates in lex-
icographic order. Hence to locate the y-coordinates in the previous
columns that will form part of the prediction, we utilize the known
information of which connected component we are compressing.7

We then predict from the y-coordinates of connected components
with identical ids in previous columns. Note that we cannot simply
use the actual true y-coordinate as a means of determining the y-
coordinates in the previous columns since it will not be available
during decompression. The above selection criterion means that the
prediction will degrade along columns where the number of con-
nected components change, but in practice we have not found this
to be a problem.

The coord3D constituent consists of the z-coordinates of the grid
points that trace out the boundary surfaces of the level set narrow
band. These are shown in green in Figure 8(a). Surpassed only by
the storage requirements of the signed distance field values in the

7In particular its connected component id, starting from zero and counted in
lexicographic order within a column.

(a)  

(b)

(c)

Fig. 8. a) The 3D grid component of the 643 Stanford bunny DT-Grid. The
z-coordinates of the coord3D constituent are shown in green. b) A close-
up shows actual z-coordinate (red-brown) predicted by three immediately
adjacent z-coordinates (blue). c) Situation in b) shown from above.

grid, the coord3D (z-coordinates) constituent of the topology usu-
ally requires the most space. To compress a given z-coordinate,
shown in red-brown in Figure 8(b), the z-components of the three
immediate neighbors, shown in blue, are used to predict the given
z-coordinate as lying in the same plane, see Figure 8(c). We predict
z(D) as z(A) + ∇z |A · ( 1

1

) = z(B) + z(C) − z(A) (using a back-
ward one-sided first order accurate finite difference approximation
to the gradient). Given the permutation symmetry of this expression
with respect to z(B) and z(C) we compress the prediction using a
context-based adaptive probability model [Taubin 2002]) with the
integer value z(B) + z(C) − 2z(A) as context. In particular the con-
text is used to select a probability model, and the goal is to cluster
similar predictions in the same model, hereby decreasing the en-
tropy and consequently increasing the compression performance.
The intuition behind our context is that it measures the deviation
of both z(B) and z(C) from z(A). The smaller the deviation, the
smaller the residuals tend to be. Special care has to be taken when
some grid points are not available for our predictor. Furthermore,
we distinguish between and use a different context in the following
three cases: 1) If no grid points exist at all, we use 0 as the predic-
tion. 2) If one exists we use the z-coordinate of that grid point as the
prediction. 3) If two exist we use the average of their z-coordinates
as the prediction. All in all, this compression strategy turned out
to outperform alternatives like differential encoding, 1D Lagrange
polynomial interpolation, and 2D Shepard interpolation.

Finally, we recall that the acc constituent of grid components
is actually redundant. It is merely used to improve random access
into DT-Grid. Hence we can simply exclude the acc constituents
in compressed form and rebuild them during decompression. This
essentially corresponds to exploiting the Kolmogorov complexity
[Li and Vitanyi 1997] for the compression of acc.

6.2 Compressing the Values

The values in the narrow band are by far the most memory-
consuming part of the data (typically at least 80%). For level sets, we
assume the values are numerical approximations to signed distances,
which has been shown to be convenient both during simulation as
well as for other applications such as ray tracing. To compress the
narrow band of signed distance values we propose a predictor based
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Fig. 9. The values are compressed using a combination of the 3D Lorenzo
predictor, the 2D parallelogram predictor and multi-dimensional differential
encoding.

on a combination of the following three techniques: a new mul-
tidimensional differential predictor, the 3D Lorenzo predictor of
Ibarria et al. [2003], and the 2D parallelogram predictor of Touma
and Gotsman [1998].8 Since we are compressing narrow bands as
opposed to dense volumes, it is tempting to utilize clamped values
outside the narrow band (as is usually done in level set computa-
tions) to form predictions; however, this will result in a degradation
of compression performance. Instead we propose to use different
predictors depending on the local topology of the narrow band. We
have benchmarked various predictors modified to accommodate the
topology of a narrow band, including the Lorenzo predictor [Ibarria
et al. 2003] (with and without probability contexts), the distance
field compression (DFC) method by M.W. Jones [2004] as well as
several other custom codecs. Note also that the DFC method and
the Lorenzo predictor perform comparably to wavelets. According
to our experiments, the codec we propose here gives the best com-
pression performance and at the same time remains fast.

Our multidimensional differential prediction is motivated by the
fact that the axial acceleration in a signed distance field is very small
and that axial differential prediction applied twice is a measure of
acceleration. In fact the acceleration in the normal direction of a per-
fect signed distance field is identically zero, except at medial axes.
However, in practice several circumstances make a prediction based
on the acceleration in the normal direction problematic. First of all,
the signed distance fields used in the context of level set simulations
are not entirely accurate as they are computed by approximate nu-
merical schemes. Secondly, it can be shown (using first order FD)
that the acceleration in the normal direction is a third-degree poly-
nomial in the value of the current grid point. During decompression
one would have to compute the roots of this polynomial in order to
determine the decompressed value. This is time-consuming, and in
addition to compressing the residuals themselves, one would also
have to compress a two-bit code indicating which of the solutions
to the third degree polynomial was the right residual. This informa-
tion is required during decompression when the actual value is not
available. Tests show that in practice our combined predictor in fact
leads to better and faster compression than if compression is applied
to the acceleration in the normal direction.

The intuition behind our approach is for the predictor to utilize as
many of the previously processed locally connected grid points as
possible (see Figure 9). In other words we always apply the predic-

8Note also that the Lorenzo predictor is a generalization of the parallelogram
predictor

tor which uses the largest number of already processed grid points.
In our experience this results in the best compression performance
and explains the prioritized order of predictors given below. Con-
sider now Figure 9, depicting eleven locally connected grid points.
Assume that we wish to compress the value of the red grid point at
position (x, y, z) and that the blue and green grid points that exist
have already been processed. Our predictor takes the following steps
to compute a residual which is then compressed using an arithmetic
coder:

(1) If all the blue grid points exist in the narrow band, we predict
the value at the red grid point using the 3D Lorenzo predictor
by computing the following residual: v(x,y,z) − (v(x−1,y−1,z−1) −
v(x−1,y−1,z) − v(x−1,y,z−1) + v(x−1,y,z) + v(x,y−1,z) − v(x,y−1,z−1) +
v(x,y,z−1)).

(2) If some of the blue grid points do not exist in the narrow
band, we determine if it is possible to apply the parallelogram
predictor. This can be done if the red grid point is part of a
face (four connected grid points in the same plane) where all
grid points have already been processed. As can be seen from
Figure 9 there are three such possible faces. Say that all the grid
points in the face parallel to the XZ plane, v(x−1,y,z), v(x,y,z−1)

and v(x−1,y,z−1), exist. The value at the red grid point is then
predicted using the parallelogram predictor and the residual is
computed as v(x,y,z) − (v(x−1,y,z) + v(x,y,z−1) − v(x−1,y,z−1)). The
procedure for the remaining faces is the same. Each face is
examined in turn, and the first face where the above conditions
apply is used to compute the residual.

(3) If it is not possible to find a face as described above, we switch
to using axial second-order differential prediction, which, as
previously mentioned, is a measure of acceleration. We ex-
amine each coordinate direction in turn and the first direction
where two previous grid points exist (a blue and a green) is used
to compute the residual. Say that the two previous grid points in
the X direction, v(x−1,y,z) and v(x−2,y,z), exist. Then we compute
the residual at the red grid point as v(x,y,z)−2v(x−1,y,z)+v(x−2,y,z).

(4) If it is not possible to apply axial second-order differential pre-
diction we apply first-order differential prediction if the pre-
vious grid point in one of the coordinate directions exist. For
example, if the previous grid point in the X direction exists, we
compute the residual as v(x,y,z) − v(x−1,y,z). Again we use the
first coordinate direction that applies to compute the residual.

(5) Finally, if none of the above conditions apply, we simply encode
the value itself.

How often each of the individual predictions above is utilized de-
pends on the narrow band topology. Internally in the narrow band,
(1) is always applied since all neighbors are available. The others
are used on the boundary of the narrow band depending on the lo-
cal configuration of previously processed neighbors. Note that in
predictions (2), (3), and (4) we do not necessarily use the face or co-
ordinate direction that results in the best prediction; instead we just
pick the first one that applies. The reason is that this procedure can be
done independently in both the encoder and the decoder. The alter-
native is to examine all possibilities, choose the best, and also encode
a two-bit code indicating which of the possibilities was chosen. In
our experience this overhead dominates the gain obtained by select-
ing the best prediction. We do, however, use a different probability
context in each of the steps used to compute this predicted value.
Employing contexts improves compression performance mainly for
larger level sets. For smaller level sets the use of several contexts
does not usually improve compression performance since we typ-
ically use relatively many bits (14 and above) in the quantization
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step. This means that the entropy in the individual adaptive contexts
may be dominated by the probabilities allocated for unused sym-
bols. Also note that when using relatively many bits, higher-order
probability models are not feasible in practice due to the amount of
memory usage they incur. This is contrary to text compression that
uses fewer bits and where higher order models are frequently used.

Whereas the topology is compressed lossless, the values are typ-
ically compressed in a lossy fashion by employing uniform quan-
tization within the range of the narrow band9 to obtain better com-
pression ratios. In doing so it is important that the quantization does
not introduce noticeable distortion and that the truncation error in-
troduced by the order of the numerical simulation methods is not
affected by the quantization rate. In practice an exact analysis of this
is difficult and highly problem dependent. For this reason we have
so far simply used the heuristic of 14 bits or more, which has not
resulted in visual artifacts in our simulations. If quantization is not
desirable, the method for lossless encoding of floating point values
by Isenburg et al. [2004] can be applied.

An additional compression strategy would be to only encode a
subset of the narrow band and then recompute the rest from the
definition of the level set as a distance function when decoding.
This amounts to encoding as many layers around the zero-crossing
as is needed to solve the Eikonal equation to a desired accuracy.
The truncated narrow band will obviously lead to a more efficient
subsequent compression. In our case we do typically not use narrow
bands wider than required for the numerical accuracy, so we have
not used this strategy in practice. However, it may be applicable
in situations where the narrow band is relatively wide, such as for
example, the morph targets demonstrated in Houston et al. [2006].

7. OUT-OF-CORE AND COMPRESSED PARTICLE
LEVEL SETS

When using level sets for free surface fluids it is common to correct
the interface with advected Lagrangian tracker particles. This Parti-
cle Level Set (PLS) method [Enright et al. 2002], greatly helps the
level set preserve mass due to the built-in numerical dissipation (i.e.,
smoothing) in most Eulerian (i.e., grid-based) advection schemes.
Since this undesired numerical dissipation is most pronounced in
regions of the surface with high curvature (i.e., features), PLS con-
siderably preserves fined surface details. Furthermore, PLS can be
extended to create natural phenomena like splashes and foam see
([Foster and Fedkiw 2001; Takahashi et al. 2003; Geiger et al. 2006])
that are typically very hard to obtain with Eulerian fluid solvers.
However, PLS comes at a significant price; the storage of the parti-
cles introduces a large memory overhead compared to the level set
representation itself, especially when employing sparse grids like
DT-Grid and H-RLE. In this section we will discuss two techniques
that dramatically reduce the memory footprint of PLS; quantization
and out-of-core streaming. Note that the PLS method has certain
constraints, such as only being applicable under passive surface ad-
vection [Enright et al. 2002], and that newer methods overcoming
these constraints have recently been proposed [Bargteil et al. 2006;
Hieber and Koumoutsakos 2005]. However, the PLS method can, in
contrast to the newer methods, easily be integrated with an existing
Eulerian level set implementation, and improves the quality of fluid
animations, which is a passive surface advection problem.

9During simulation with compressed values, the quantization range is ex-
panded to ensure that advected values fit within the quantization range. Nar-
row band level set methods need to limit the maximal movement between
time steps anyway to ensure that the zero-crossing is captured correctly.

The source of the memory overhead associated with PLS is
that many particles are needed to effectively correct the implicit
interface. Enright et al. [2002] recommend using 64 particles per
3D grid cell close to the zero level set. If we assume that each parti-
cle stores 17 bytes of data10 we need 1088 bytes to store the particles
of each grid cell. This should be compared to the 4 bytes needed to
store the signed distance floating point value of the level set func-
tion in the same grid cell. If the level set is stored using a sparse
narrow band data structure, such as the DT-Grid or the H-RLE, the
particles can use close to two orders of magnitude more memory
than the level set itself. For instance, consider the fluid animation
in figure 1 which is represented by a DT-Grid PLS containing 7.6M
voxels. Storing this level set requires only 32 MB whereas the 172M
particles associated with the interface requires an additional 2.8 GB.

Our primary approach to reducing the memory footprint of the
PLS is lossy compression by means of quantization. We choose to
use quantization since it is fast, flexible and relatively simple to
implement. We consistently choose the level of quantization such
that no visual artifacts are introduced.11 Note that because the parti-
cle distribution is uniformly random around the interface, statistical
encoders are not very effective.

7.1 Particle Quantization

The particle radii is limited to [−0.5dx, 0.5dx], where dx denotes
the uniform grid spacing in world coordinates. Enright et al. [2002]
suggest using [0.1dx, 0.5dx] as the range of allowed radii, but since
we will use the sign of the radius to represent whether a particle is
inside or outside the interface, we shall employ the wider symmetric
interval. Our approach is more compact since we simply use one
bit in the sign of the radius as opposed to 8 bits for a boolean. The
interval of possible values for the coordinates is only limited by the
size of the simulation domain.

To facilitate better compression and out-of-core performance we
switch from world coordinates to a local particle-in-cell frame of
reference. This means that the position of the particle in the begin-
ning of each iteration is bounded to the local coordinate interval
[0, 1] of the grid cell. Currently we assume that the level set advec-
tion adheres to the CFL condition [Osher and Fedkiw 2002; Sethian
1999], meaning that the surface is restricted to move at most one
grid cell in any direction during each iteration. Due to this, the same
restriction is imposed on the particles. Consequently the interval
of possible values for the local particle coordinates is [−1, 2]. The
local interval for the particle radii is simply [−0.5, 0.5]. Thus, the
values of the particle radii and positions are bounded and indepen-
dent of the size and resolution of the grid. Another essential feature
of this local frame of reference approach is that it allows us to store
bins of particles in the same (lexicographic) order as the DT-Grid.
This in turn facilitates fast sequential access, which is critical for an
efficient out-of-core implementation. Finally, the use of local coor-
dinates significantly improves the precision for a given level of the
quantization. Assume that we want to quantize particles stored in a
regular, dense grid of the size 100 × 100 × 100 grid cells. Using
10 bits to quantize each component of the particle world coordinates
we achieve a precision of ±0.5 · 100/210 ≈ ±0.049. If we instead
used the local coordinate approach described earlier, we achieve a
precision of ±0.5 · 1/210 ≈ ±0.00049. In our implementation we
quantize particles using 40 bits. 9 bits for the radius, 10 bits for each

103 4-byte floats for the 3D position of the particle center, one 4-byte float
for the radius and one additional byte to store boolean information such as
whether the particle has escaped the level set or not.
11This is generally verified through numerical experiments.

ACM Transactions on Graphics, Vol. 26, No. 4, Article 16, Publication date: October 2007.



16:12 • M. B. Nielsen et al.

Grid cells

Index: 0

Particles: 4

Index: 4

Particles: 3

Index: 7

Particles: 2
Particle bins

Particle array p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

Fig. 10. Outline of the particle/bin data structure. Each grid cell contains
a particle bin that in turn points to a range of particles in the particle array.

coordinate and the remaining bit to store Boolean information, such
as whether the particle has escaped from the level set. If more pre-
cision is desired, we suggest increasing the size of the particle one
byte at the time by adding 2 additional bits to the radius and the 3
coordinate components. However, we found that the 40-bit quanti-
zation produced simulations with a visual appearance that was very
close to that of the unquantized PLS. Using this relatively simple
quantization scheme we are able to reduce the size of a particle
from 17 to 5 bytes, a reduction by a factor of 3.4. Since we rely on
topology data already provided by the grid, we achieve a precision
of ±0.5 · (2 − −1)/1024 · dx ≈ ±0.0015 · dx for the coordinates
and ±0.5/512 · dx ≈ ±0.00098 · dx for the radius. Note that in
spite of the quantization our particle representation is still first order
accurate.

Our implementation of the particle/bin data hierarchy employs
one 4-byte integer pointer12 and a 1-byte character to each grid
cell in the narrow band. The integer points into an array containing
all particles and the additional byte is used to store the number of
particles present in the grid cell. This pair of values can be seen as
a particle bin that can store up to 256 particles.

Storing the PLS representing the fluid in Figure 1 using the quan-
tization scheme outlined above requires only 890 MB. 32 MB to
store the 7.6M grid cells using a DT-Grid, 36 MB to store the parti-
cle bins and 821 MB to store the 172M particles. This is a reduction
of data by a factor 3.2 compared to the 2.8 GB needed to store the
uncompressed PLS.

7.2 Out-of-Core Particle Level Sets

Though the quantization scheme described above significantly re-
duces the memory footprint of the PLS we are still limited by the
amount of available in-core memory. To allow for PLS of extreme
resolution we employ the out-of-core framework described in Sec-
tions 4 and 5. We note that the technique described in this section
can be used without quantization. However, since the PLS method
is I/O intensive this typically leads to poor out-of-core performance.
When quantization is employed the I/O throughput13 increases by
more then a factor of three.

For the out-of-core implementation we use the particle/bin data
structure described in the previous section. We also store particles,
particle bins, and the velocities used to advect the particles in sequen-
tial order. This storage order is readily obtained by initially iterating
trough the grid in sequential order and adding data associated with

12This allows us to address 4.3 billion particles. The size of the pointer can
of course be increased if more particles are needed.
13The amount of particles that can be read/written to disk per time unit.

every grid cells when that cell is encountered. The challenge is to
keep this sequential order when the level set and the particles are
advected. Since the values for the velocities and particle bins are
directly associated with grid points, they will always be accessed
sequentially as long as the grid is accessed sequentially. The parti-
cles on the other hand are more tricky. When they move between
grid cells the sequential storage order of the particle array will be
broken. Assume that all the particles have been advected but not yet
moved to their new grid cells, that is, that all particles have local
coordinates in the range of [−1, 2]. We can now move the particles
to their target cells while keeping the sequential access order by the
following algorithm:

(1) Initialization. Allocate two new out-of-core arrays; a particle
array and a particle bin array both of the same size as the ones
currently used. Fill the particle bin array with empty particle
bins; that is, all bins contain a null pointer into the particle
array and zero particles. Finally create an out-of-core array of
unsigned bytes. This array will keep track of how many par-
ticles end up in each grid cell after they have been moved.
Initialize each counter with the current number of particles in
each cell.

(2) Preprocessing. Iterate through the grid sequentially and look
at each particle. If the particle coordinates indicate that it is
still in its current grid cell; do nothing. Otherwise add 1 to the
particle counter corresponding to the neighboring grid cell into
which the particle is moving and subtract 1 from the particle
counter for the current grid cell. Do not move the particles to
their new cells yet. If a particle intends to moves into a grid
cell that does not have an allocated particle bin, that is, a bin
with a null index pointer, mark this bin to be added by, for
example, setting the pointer to a large value. Particle bins in
cells neighboring the current one can be reached by using a
stencil-iterator containing 27 stencil points. One stencil point
for the current cell and one for each of the 26 neighbors a
particle can potentially move into.

(3) Particle bin creation. Initialize an index counter starting at zero.
Sequentially iterate through the grid again. For each particle bin
that does not have a null pointer (this includes the ones flagged
in the previous step) do the following: Read the number of
particles that will exist in the bin after advection from the array
of particle counters. Set the index pointer for the new particle
bin corresponding to the current grid cell to the value of the
index counter. Increase the index counter by the number of
particles that will be present in the cell after advection. This
will set the index pointer for each of the new particle bins to
the correct position in the new particle array leaving room for
the number of particles that will be present in that bin after the
particles have been moved to their new cells.

(4) Particle relocation. Iterate through the grid one last time. For
each particle in a populated cell determine which of the 27
possible cells the particle is moving into. Using the stencil, read
the particle bin associated with this cell from the new array of
particle bins. Write the particle into the previously allocated
new particle array at the index position indexstart + num p
where indexstart is given by the target particle bin and num p
is the number of particles currently present in that bin.

(5) Cleanup. Delete the old particle array and the old particle bins.

This algorithm associates a new particle bin with each grid cell
and writes a new particle array that stores all particles in such a
way that they will be accessed sequentially when iterating through
the grid in sequential order. Since we use one byte to describe the
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number of particles in each particle bin it is possible that more than
the allowed 255 particles will enter the bin. If this happens we simply
throw away the excess particles.

After advecting all particles the density of particles in each grid
cell may have changed drastically—some cells may contain far more
than the desired density of 64 particles and some may be completely
empty. The PLS method requires us to enforce the density constraint
once in a while by adding particles to underpopulated cells and delet-
ing excess particles from crowded cells. Maintaining the sequential
storage order of the particles during this step can be done using the
following simple algorithm:

(1) Initialization. Create a new, empty out-of-core particle array.
Also create a counter and initialize it to zero.

(2) Density enforcement. Iterate through the grid in sequential or-
der and read all particles present in the current grid cell. If the
cell has too few particles, seed new ones, if it has too many,
remove the overhead. After this, add all the particles in the
current cell to the end of the new particle array. Set the index
pointer for the particle bin corresponding to the grid cell to the
value of the counter and set the number of particles in that bin
to the number of particles added. Finally increment the counter
by the number of particles added.

(3) Cleanup: Delete the old particle array.

The two algorithms we have outlined ensure a sequential stor-
age order of the particles when the particle density in a grid cell
changes and when particles move between grid cells. Without them
the particle array will fragment and reading/writing of particles will
soon require a large amount of random access operations on the hard
disk. The PLS method contains more then just advecting particles
and enforcing a specific particle density, but the remaining steps are
identical to their in-core counterparts. Performance benchmarks for
the quantized and out-of-core PLS are available in Section 9.2. We
have also used our out-of-core framework, including our compact
PLS, in free surface fluid simulations. Section 9.3 reports results
from these simulations, as well as a brief description of the em-
ployed method.

8. BENCHMARKS AND RESULTS

In this section we evaluate the performance of our out-of-core and
compression framework. In particular, we demonstrate that the level
set framework can sustain a throughput that is 65% of the peak per-
formance of state-of-the-art in-core simulations—even for models
of sizes in the order of several GB.

8.1 Benchmarks

As emphasized previously, the out-of-core and compression compo-
nents can be combined arbitrarily which gives distinctive properties
to the resulting framework. For instance, keeping both topology and
values in-core gives the best performance, streaming values to disk
and keeping topology in-core gives the second-best performance
whereas streaming values to disk and compressing topology in-core
usually gives the third-best performance. The two parameters of
the out-of-core framework, the page size and the number of pages
in the cache, as well as the number of quantization bits used in the
compression also affect performance. Typically relatively few pages
and large page sizes give the best results. Depending on the size of
the problem at hand and the computing resources available, the user
can choose an appropriate combination of framework components
for his particular setting. In this section we report the performance re-
sulting from combining the different components of the framework

and elaborate on how to choose the parameters of the cache. We
also verify the near-optimality of our page-replacement policy for
stencil iteration. All the benchmark tests presented in Section 8 are
run on the same 32-bit Windows XP Pro PC with a 2.41GHz AMD
CPU, 1GB of main memory and a Western Digital Raptor disk.

8.1.1 Page Replacement and Prefetching. Table I lists the
hit ratio (number of page hits to the number of total page re-
quests) of LRU page-replacement without prefetching (demand-
paging only), our page-replacement algorithm without prefetch-
ing (demand-paging only), the optimal page-replacement policy
for a demand-paging algorithm [Tanenbaum 1992] and our page-
replacement algorithm with prefetching enabled. Clearly a hit ratio
of one is an upper bound. It is not possible to apply the optimal
demand-paging strategy online since it requires knowledge of future
requests, but by logging the page demands during stencil iteration
one can compute the optimal strategy offline in order to do com-
parisons. The reader should note that the optimal demand-paging
strategy is only optimal amongst the demand-paged algorithms, that
is, where prefetching is not included. This explains why it is possi-
ble for our combined page-replacement and prefetching algorithm
to achieve better hit ratios than the optimal demand-paged algo-
rithm in Table I. The test case is a single sequential stencil iteration
over an out-of-core DT-Grid of the Stanford Bunny in resolution
10003 using a WENO finite difference stencil with 19 grid points.
Initially the cache contained no pages. As can be seen from Table I,
our page-replacement policy without prefetching comes very close
to the optimal and performs better than the LRU strategy. When
combining with our prefetching strategy, the hit ratio is close to one
for larger page sizes. Hence we conclude that our page-replacement
algorithm comes close to optimal and that our prefetching algorithm
heightens performance, bringing it near the optimal hit-ratio of one.
Note that Table I lists relatively small page sizes. This is primarily to
show how the hit ratio increases with page size, and that our replace-
ment strategy works well even in the presence of relatively small
page sizes. In order to increase the throughput, however, larger page
sizes must typically be used (see the following). This is particularly
important for larger level sets. In such cases the hit ratio usually
remains close to one, even for gigabyte-sized level set models.

To measure the I/O bandwidth performance we also logged the
total number of pages read, R, and compared this to the number of
pages occupied by the level set model, P . Optimally Q = R

P = 1;
that is, each page is loaded exactly once. For the tests above having
a page size above 4K, Q is below 2 and in most cases close to 1.
In this case the stencil contained S = 19 grid points, hence the
improvement over the worst case ratio of 19 is significant (recall the
discussion in Section 5).

The choice of parameters for the out-of-core framework, page
size, and number of pages, can affect performance quite dramati-
cally, as illustrated in the graph in Figure 11. The optimal param-
eters depend on the problem at hand: the size and topology of the
level sets involved, the number of grid points in the stencil, and the
underlying hardware. One can run benchmark tests to tune these
parameters for a particular example, but this is typically not very
practical. While we leave it for future work to determine exactly
how the optimal parameters depend on hardware as well as charac-
teristics of the simulation, we have found that a page size of 4MB
and a total of 32 pages in the cache performs quite well over a
wide range of level set sizes and stencils. The graph in Figure 11
shows an elaborate benchmark test where the number of pages and
page size is varied for sequential stencil iteration over the Stanford
Bunny in resolution 80003. In this particular case a page size of
8MB and a total of 32 pages performs best, but a page size of 4MB
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Table I.
Comparison of the Page-Hit-Ratios of Our Page-Replacement Policy with Prefetching Disabled (Our

Demand), Our Page-Replacement Policy with Prefetching Enabled (Our Prefetch), LRU Page-Replacement
Without Prefetching (LRU Demand) and the Optimal Page-Replacement Policy for a Demand-Paged

Replacement Policy Computed Offline (Opt Demand) from a Logged Sequence of Demand Requests. See the
Text Below for an Exact Explanation of These Terms. The Results Eere Generated by a Single Sequential

Stencil Iteration Over the Stanford Bunny in Resolution 10003 Using a WENO Finite Difference Stencil with
S = 19 Grid Points, and the Cache Contained no Pages at the Beginning

32 pages 64 pages 128 pages

LRU Opt LRU Opt LRU Opt
Page-size (KB) Demand Demand Demand Demand Demand Demand

0.5 0.631377 0.645004 0.631647 0.660637 0.631802 0.691117
1.0 0.631651 0.660015 0.631805 0.690580 0.640359 0.748979
2.0 0.631810 0.689569 0.640360 0.748286 0.642968 0.857327
4.0 0.640384 0.746922 0.643010 0.856420 0.888819 0.943889

Our Our Our Our Our Our
Demand Prefetch Demand Prefetch Demand Prefetch

0.5 0.642074 0.945229 0.657989 0.946476 0.688768 0.946760
1.0 0.654621 0.946133 0.685807 0.946775 0.745399 0.947049
2.0 0.679419 0.947686 0.740625 0.948007 0.853331 0.954492
4.0 0.730505 0.989303 0.848156 0.990706 0.943635 0.959498
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Fig. 11. The throughput (processed gridpoints/second) as a function of
page size (in MB) for various numbers of pages in the cache. The results
were generated by sequential iteration over the Stanford Bunny in resolution
80003 with a finite difference stencil of seven grid points. The maximal
memory usage of the cache was in this case restricted to 512 MB.

and a total of 32 pages also performs quite well. The latter config-
uration is the one we used for all benchmarks presented in the next
section.

Note also that we use direct I/O (i.e., DMA) to bypass OS caching
and prefetching. In our experience this gives an average speedup
of approximately 10%. If on the other hand we leave out our own
prefetching algorithm and rely solely on OS prefetching through the
use of higher level I/O system calls, the performance is roughly half
of the performance obtained when we utilize our own prefetching
algorithm.

8.1.2 Online Out-of-Core and Compression Framework. As a
prelude to the performance evaluation of our flexible framework we
define the following variations:

—OOC DT-Grid I: Values uncompressed out-of-core, topology un-
compressed in-core.

—OOC DT-Grid II: Values uncompressed out-of-core, topology un-
compressed out-of-core.

—OOC CDT-Grid I: Values uncompressed out-of-core, topology
compressed in-core.

—OOC CDT-Grid II: Values compressed out-of-core, topology
compressed out-of-core.

—CDT-Grid I: Values compressed in-core, topology compressed
in-core.

The performance of these data structures is evaluated by compar-
ing the throughputs measured in processed grid points per second.
We use three test cases: 1) The read throughput of sequential iteration
with a seven grid point finite difference stencil. 2) The combined
read and write throughput with the same stencil iteration. 3) The
practical throughput of an actual level set simulation, in this case an
erosion.

Table II lists the average throughputs of several tests with the
framework variations defined above as well as a custom implementa-
tion of the original in-core DT-Grid which is state of the art [Houston
et al. 2006]. For simulations that fit in-core, our framework intro-
duces an overhead due to the additional software layer (see Figure 2).
In particular, when storing topology and values uncompressed in-
core, simulations perform at about 76% of the performance of the
original DT-Grid. Hence the framework overhead is approximately
24%. This also means that a throughput of 76% is an approximate
upper bound for the peak performance of our framework. How-
ever, due to fluctuations in overall system performance this may
vary slightly. For read and read/write iterations, the upper bounds
on performance were estimated to be approximately 72% and 76%
respectively. A performance of an out-of-core data structure close
to these upper bounds indicates that the method is CPU or memory
limited, otherwise it is I/O limited.

Table II indicates that the throughput of both read and read/write
iterations for our framework does not depend on the number of vox-
els in the narrow band of the level set. This property is not shared
by the original in-core DT-Grid for which the performance drops
significantly around a resolution of 40003 which is when the limit of
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Table II.
Throughput Rates (gridpoints/second) for Stencil Iteration Through the Entire Narrow Band of the Stanford Bunny with Reads Only,

Stencil Iteration Through the Entire Narrow Band with Reads and Writes, and for a Level Set Simulation (erosion). The Numbers Given in
Parenthesis are the Percentages of the State-of-the-Art In-Core DT-Grid Performance with Respect to the Given Test (read-iteration,

read/write-iteration or simulation). For Each Instance of the Stanford Bunny, its Resolution (res), the Number of Grid Points in the Narrow
Band (#GP), the Uncompressed DT-Grid Size (size) and the Uncompressed DT-Grid Size Where an Additional N-Tube Which is Required
for Simulation has been Added to the Level Set (simsize) is Reported. A 14 Bit Quantization was Used for the Compressed Values. For the
Data Structures Compressing the Values Only Read-Iteration was Considered Since During Compression it is not Possible to Both Read and
Write to the Same Stream of Data. Furthermore Some of the Tests are not Possible Due to Virtual Memory Constraints. In These Cases the

Result is Denoted NP = Not Possible
Reading Reading&Writing Simulation Reading Reading&Writing Simulation

Grid GP/Sec GP/Sec GP/Sec GP/Sec GP/Sec GP/Sec

Res=10003, #GP=1.4e7, size=71MB, simsize=84MB Res=20003, #GP=5.7e7, size=289MB, simsize=341MB
DT-Grid 1.1e7 (100%) 9.9e6 (100%) 1.2e6 (100%) 1.1e7 (100%) 9.8e6 (99%) 1.2e6 (100%)
OOC DT-Grid I 7.1e6 (65%) 7.4e6 (75%) 9.4e5 (78%) 7.5e6 (68%) 7.4e6 (75%) 7.7e5 (64%)
OOC DT-Grid II 6.8e6 (60%) 6.5e6 (66%) 9.0e5 (75%) 7.7e6 (70%) 7.4e6 (75%) 6.9e5 (58%)
OOC CDT-Grid I 5.2e6 (47%) 5.1e6 (52%) 6.6e5 (55%) 5.3e6 (48%) 5.2e6 (53%) 6.5e5 (54%)

CDT-Grid I 1.2e6 (11%) NP 8.6e4 (7%) 1.2e6 (11%) NP 8.6e4 (7%)
OOC CDT-Grid II 1.2e6 (11%) NP 9.9e4 (8%) 1.2e6 (11%) NP 1.0e6 (8%)

Res = 25003, #GP = 8.9e7, size = 454MB, simsize = 578MB Res = 30003, #GP = 1.3e8, size = 655MB, simsize = 771MB
DT-Grid 1.1e7 (100%) 9.9e6 (100%) 2.2e5 (18%) 1.1e7 (100%) 9.8e6 (99%) NP
OOC DT-Grid I 7.4e6 (67%) 7.4e6 (75%) 7.9e5 (66%) 7.6e6 (69%) 7.5e6 (76%) 7.9e5 (66%)
OOC DT-Grid II 7.8e6 (71%) 7.1e6 (72%) 6.9e5 (57%) 7.9e6 (72%) 7.8e6 (79%) 6.8e5 (57%)
OOC CDT-Grid I 5.3e6 (48%) 5.2e6 (53%) 6.6e5 (55%) 5.3e6 (48%) 5.2e6 (53%) 6.5e5 (54%)

CDT-Grid I 1.2e6 (11%) NP 8.6e4 (7%) 1.2e6 (11%) NP 8.6e4 (7%)
OOC CDT-Grid II 1.2e6 (11%) NP 8.6e4 (7%) 1.2e6 (11%) NP 8.6e4 (7%)

Res = 40003, #GP = 2.3e8, size = 1.2GB, simsize = 1.4GB Res = 50003, #GP = 3.6e8, size = 1.8GB, simsize = 2.1GB
DT-Grid 3.3e6 (30%) 1.5e6 (15%) NP 2.1e6 (19%) 1.3e6 (13%) NP
OOC DT-Grid I 7.6e6 (69%) 7.5e6 (76%) 7.9e5 (66%) 7.7e6 (70%) 7.5e6 (76%) 7.9e5 (66%)
OOC DT-Grid II 8.1e6 (74%) 7.2e6 (73%) 6.8e5 (57%) 8.2e6 (75%) 6.7e6 (68%) 6.6e5 (55%)
OOC CDT-Grid I 5.3e6 (48%) 5.2e6 (53%) 6.6e5 (55%) 5.4e6 (49%) 5.3e6 (54%) 6.6e5 (55%)

CDT-Grid I 1.2e6 (11%) NP 9.3e4 (8%) 1.2e6 (11%) NP 9.2e4 (8%)
OOC CDT-Grid II 1.2e6 (11%) NP 9.4e4 (8%) 1.2e6 (11%) NP 9.4e4 (8%)

Res = 60003, #GP = 5.2e8, size = 2.6GB, simsize = 3.1GB Res = 80003, #GP = 9.2e8, size = 4.7GB, simsize = 5.5GB
DT-Grid NP NP NP NP NP NP
OOC DT-Grid I 7.7e6 (70%) 7.5e6 (76%) 7.9e5 (66%) 7.6e6 (69%) 7.5e6 (76 %) 6.7e5 (56%)
OOC DT-Grid II 8.3e6 (75%) 6.7e6 (68%) 6.5e5 (54%) 8.3e6 (75%) 6.7e6 (68%) 6.1e5 (51%)
OOC CDT-Grid I 5.3e6 (48%) 5.2e6 (53%) 6.6e5 (55%) 5.3e6 (48%) 5.3e6 (54%) 6.4e5 (53%)

CDT-Grid I 1.2e6 (11%) NP 8.8e4 (7%) 1.2e6 (11%) NP NP
OOC CDT-Grid II 1.2e6 (11%) NP 9.3e4 (8%) 1.2e6 (11%) NP 9.2e4 (8%)

physical memory is exceeded. At resolutions of 60003 and above it is
not even possible to initialize the original DT-Grid data structure due
to lack of virtual memory. The performance of iterations with OOC
DT-Grid I and OOC DT-Grid II are, although fluctuating, very close
to the approximate upper bound, suggesting that stencil iterations
are close to CPU and/or memory bound, in contrast to I/O bound.
For the OOC CDT-Grid I, which compresses the topology in-core
and streams the values uncompressed to disk, the performance is
just above 50%. Since compression is relatively CPU intensive, this
data structure does not perform as well for iterations as the other
out-of-core data structures. The performance is worst for the OOC
CDT-Grid II and the CDT-Grid I that both compress the values and
the topology. Recall that the values are the most memory consum-
ing part of the level set. Since statistical coding is relatively CPU
intensive, this is to be expected. In our experience even very light
weight compression schemes for the values are out-performed by
their out-of-core counterparts. This is because the numerical com-
putations hide the I/O latency, whereas an arithmetic coder will

compete for CPU time with the computationally demanding level
set or fluid computations. This overall behavior is also supported by
the throughputs of the level set simulations, although there are some
differences. Again the performance of the original DT-Grid starts to
degrade quite early due to lack of physical memory. At a resolution
of 25003 the throughput has dropped to a mere 18%. In contrast the
performance of OOC DT-Grid I is more than 3.5 times faster. For
simulations where all pages fit in-core, the performance of OOC
DT-Grid I, streaming only values to disk, is very close to its approx-
imate upper bound. However, when not all of the pages fit in-core,
the framework becomes I/O limited and the performance drops to
approximately 65%. This performance remains constant even for
simulations involving file sizes of several gigabytes. At resolutions
of 80003 the performance starts to degrade for OOC DT-Grid I since
it stores the topology uncompressed in-core. Note that even though
the topology takes up only a relatively small part of the total size
of a DT-Grid, the high resolution of our level sets imply that topol-
ogy combined with buffering for the out-of-core component can
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start to fill up the available memory. For both OOC DT-Grid II and
OOC CDT-Grid I the performance is roughly the same and cen-
tered around 55% throughout the tests. The performance of OOC
DT-Grid II seems to degrade a little for very large level sets. In fact,
given enough memory OOC CDT-Grid I performs superior since it
compresses the topology in-core and only stores values out-of-core.

Clearly no variation of our framework performs as well as pure
in-core simulations using state-of-the-art data structures. However
we stress that our out-of-core framework generally delivers more
than 50% of this in-core peak performance—even for very high res-
olution simulations requiring up to 5.5GB of storage for a single
level set. The only exceptions are framework variations employing
value compression. The value codecs are relatively CPU intensive
and quantize the numerical distances to obtain good compression
ratios. Given a maximum allowed distortion this is convenient for
static models or level sets corresponding to particular frames in an
animation. However for online simulations care must be taken in
order to avoid the compression error to accumulate as discussed in
Section 6.2. We therefore advocate utilizing the out-of-core frame-
work possibly in combination with compression of the topology
for online simulations and a combined compression and out-of-core
framework for reduced offline storage and transfer of data needed
later in a production pipeline.

8.1.3 Offline Compression. Next we compare our compres-
sion framework to the compression scheme for hexahedral vol-
ume meshes by Isenburg and Alliez [2002] and associated scalar
values by Mascarenhas et al. [2004]. Unfortunately we are not
able to make a direct comparison to the benchmarks reported in
Mascarenhas et al. [2004]. First, only one of the data sets used in
the paper seems to be publicly available. Secondly, the tests are run
on hardware that we do not have access to, and finally only the
cell counts are reported. Fortunately, source code for the encoder
of Isenburg and Alliez is available online. It was then straightfor-
ward to extend this source code with the scalar value compression
method introduced in Mascarenhas et al. [2004]. It should be noted
that none of these compression techniques work out-of-core and
actually use a significant amount of memory (this is also noted in
Isenburg [2004], chapter 6). Consequently we are limited to evaluat-
ing relatively small grids sizes compared to what is used elsewhere
in this paper. Table III lists the compression times and compressed
sizes of several models. In these tests we used a 14-bit quantization
for the values. The times listed include only the time spent on com-
pression. This is due to the fact that the two methods we compare
use different data structures and the setup and load time of these
differ greatly. In particular the load time of the data structure by
Isenburg is significantly longer than the time for loading a DT-Grid
into memory. From Table III it can be seen that on average our
method is about 10 times faster and compresses 14% better.

Finally, Tables IV and V summarize performance of our compres-
sion framework applied to level set models with original sizes in the
order of several gigabytes. Since all models are available from the
public Stanford Scanning Repository, we hope these tables might es-
tablish benchmarks for future evaluations of level set compressions.
The timings include streaming to and from disk, and again a 14-bit
quantization was applied to the distance values. For these models
our compression method produces between 76% and 93% compres-
sion when compared to an uncompressed DT-Grid representation.
When compared to an uncompressed full grid representation, our
method consistently gives more than 99% compression for all these
examples. Note that the latter percentage is the one that should
be used when comparing our method to a volumetric method that
compresses the entire clamped signed distance field volume. From

Table III.
Comparison Between the Performance of Our
Compression Framework and the Methods of

Isenburg et al. and Mascarenhas et al. . Narrow Band
Width γ = 5. Tests Run on an 2.41GHz AMD with

1GB of Memory
Our Method Isenburg/Mascarenhas
Comp Comp Comp Comp
Time Size Time Size

Bunny, 89 × 88 × 71, 0.703 MB, 153818 grid points
0.188 s 0.160 MB 1.92 s 0.187 MB
Buddha, 128 × 58 × 57 , 0.778 MB, 173005 grid points
0.218 s 0.189 MB 2.19 s 0.217 MB
Statuette, 88 × 55 × 49, 0.303 MB, 66942 grid points
0.094 s 0.0789 MB 0.844 s 0.0872 MB

Table IV we can furthermore see the very low memory footprint of
the Slice Cache and probability tables associated with the arithmetic
coder. These two components are the main consumers of memory
in our offline compressor, since our prefetcher only utilized a single
32KB buffer for each component (6 in total). Hence for the largest
model compressed in the examples presented here, the overall mem-
ory usage is approximately 13MB. Notice also how efficiently our
method compresses the topology of the grid. This is evident from
Table V where the percentages of compression for the individual
components are listed. The only component that is not efficiently
compressed is coord1D which the DT-Grid in many cases already
represents using very few bytes due to its hierarchical index com-
pression (recall Figure 3).

Using the Metro tool [Cignoni et al. 1996] it is possible to mea-
sure the distortion between two meshes as the Hausdorff distance
normalized to the length of the bounding box diagonal. In our case
we can measure the distortion between meshes extracted from the
decompressed (includes quantization artifacts) and the original nar-
row band distance volumes. In general the distortion decreases as
the resolution increases. This is simply due to the fact that quan-
tization is applied in the narrow band whose (Euclidean) width is
decreasing as the grid resolution increases. In Tables IV and V the
distortion measured on the bunny in lowest resolution was 8.7−5,
which is the same order of magnitude as the distortions reported in
Lee et al. [2003]. We were not able to measure the distortion on the
higher resolution distance fields due to the large amount of triangles
generated by the extraction, but as we have argued, the distortion
decreases as the resolution is increased. However, in the future we
plan to implement a Metro tool equivalent that operates directly
on the level set. Using the framework described in this article the
Hausdorff distance can be evaluated simply by streaming the narrow
band distance fields through memory.

9. APPLICATIONS

In addition to the benchmarks presented in the previous section we
now present several applications of our out-of-core and compression
framework. This includes: 1) Shape modeling and deformations,
2) particle level sets, 3) out-of-core and compressed fluid simula-
tions, 4) out-of-core mesh-to-level-set scan conversion, 5) out-of-
core linear algebra and, 6) out-of-core solutions of Partial Differ-
ential Equations (PDEs) embedded on high resolution surfaces. In
this section the machine specifications are listed along with the de-
scription of each particular application.
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Table IV.
Compression Statistics for Various Level Set Models. Narrow Band Width, γ = 3. Quantization of Values to 14 Bits Per Grid Point.
Most of the Captions Should be Self-Explanatory Except Grid Point Count Which is the Number of Grid Points in the Narrow Band,

% Compress/DT-Grid Which is the Percentage of Compression Measured Against the Uncompressed DT-Grid Representation, %
Compress/FullGrid Which is the Percentage of Compression Measured Against an Uncompressed Full-Volume Grid Containing the
Narrow Band (this illustrates the efficiency of our framework seen as a full-volume compressor applied to a clamped signed distance

field), and Finally Max Mem Which is Reported for the Slice-Cache and the Probability Tables (Prob-Table) in MB
Compress Decompress Orig Comp Bits Per % % Max Mem
Wall Time Wall Time Size Size Grid Point Grid Point Compress/ Compress/ Slice-Cache/

Model (secs) (secs) (MB) (MB) Compressed Count DT-Grid Full-Grid Prob-Table

Lucy
487 × 281 × 833 4.61 4.42 17.8 4.43 9.10 4.09e6 75 99 0.31 / 1.5
1987 × 1142 × 3409 78.8 73.7 303 68.4 8.24 6.96e7 77 99 1.3 / 5.8
3987 × 2290 × 6844 313 301 1226 254 7.59 2.81e8 79 99 2.7 / 15
David
1186 × 487 × 283 7.27 7.05 28.6 6.46 8.29 6.54e6 77 99 0.37 / 2.0
4864 × 1987 × 1149 122 117 489 93.2 7.01 1.12e8 81 99 1.6 / 9.6
9768 × 3987 × 2304 487 469 1975 303 5.63 4.51e8 85 99 3.3 / 23
Bunny
491 × 487 × 381 3.73 3.63 15.8 2.91 7.18 3.41e6 82 99 0.20 / 0.82
1991 × 1974 × 1544 59.0 60.0 264 26.6 3.92 5.69e7 90 99 0.95 / 1.7
3991 × 3956 × 3094 237 239 1064 85 3.10 2.29e8 92 99 2.1 / 3.1
Buddha
1195 × 494 × 493 13.7 12.9 55.5 11.1 7.65 1.21e7 80 99 0.55 / 1.2
4848 × 1996 × 1993 213 210 919 116 4.86 2.01e8 87 99 2.4 / 3.7
9718 × 3998 × 3993 888 873 3695 370 3.84 8.08e8 90 99 5.0 / 8.0

Table V.
Compression Statistics for Various Level Set Models. Narrow Band Width, γ = 3. Quantization of Values to 14 Bits Per Grid Point. The

Table Lists the Bits Per Grid Point (BPGP) for the Original and Compressed Topology and Values Respectively. Additionally the
Percentage of Compression (% Comp) is Listed for Each Individual Component of the Topology as Well as the Values. The Number in

Parenthesis is the Percentage that this Particular Component Takes up of the Entire Uncompressed DT-Grid
Orig Comp Orig Comp % % % % % % %

Topology Topology Values Values Comp Comp Comp Comp Comp Comp Comp
Model BPGP BPGP BPGP BPGP coord1D coord2D coord3D val1D val2D val3D acc

Lucy
487 × 281 × 833 4.50 0.405 32 8.69 0 (0.0) 85 (0.0) 80 (5.4) 98 (0.0) 97 (1.4) 73 (88) 100 (5.5)
1987 × 1142 × 3409 4.57 0.256 32 7.34 0 (0.0) 89 (0.0) 88 (5.6) 99 (0.0) 99 (1.3) 77 (88) 100 (5.6)
3987 × 2290 × 6844 4.57 0.288 32 7.95 0 (0.0) 88 (0.0) 86 (5.6) 99 (0.0) 98 (1.3) 75 (88) 100 (5.6)
David
1186 × 487 × 283 4.67 0.376 32 7.91 0 (0.0) 84 (0.0) 83 (5.7) 99 (0.0) 97 (1.4) 75 (87) 100 (5.7)
4864 × 1987 × 1149 4.74 0.270 32 6.74 0 (0.0) 87 (0.0) 88 (5.8) 99 (0.0) 99 (1.4) 79 (87) 100 (5.8)
9768 × 3987 × 2304 4.74 0.232 32 5.40 0 (0.0) 87 (0.0) 89 (5.8) 99 (0.0) 99 (1.4) 83 (87) 100 (5.8)
Bunny
491 × 487 × 381 7.00 0.254 32 6.92 0 (0.0) 85 (0.0) 91 (7.2) 98 (0.0) 99 (3.6) 78 (82) 100 (7.2)
1991 × 1974 × 1544 6.94 0.223 32 3.69 0 (0.0) 88 (0.0) 92 (7.2) 99 (0.0) 99 (3.5) 88 (82) 100 (7.2)
3991 × 3956 × 3094 6.94 0.213 32 2.89 0 (0.0) 89 (0.0) 92 (7.2) 99 (0.0) 99 (3.5) 91 (82) 100 (7.2)
Buddha
1195 × 494 × 493 6.38 0.265 32 7.38 0 (0.0) 79 (0.0) 90 (6.8) 96 (0.0) 99 (3.0) 77 (83) 100 (6.8)
4848 × 1996 × 1993 6.36 0.215 32 4.65 0 (0.0) 84 (0.0) 92 (6.8) 98 (0.0) 99 (2.9) 88 (83) 100 (6.8)
9718 × 3998 × 3993 6.35 0.203 32 3.64 0 (0.0) 86 (0.0) 92 (6.8) 99 (0.0) 99 (2.9) 89 (83) 100 (6.8)
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Fig. 12. Level set morph between a 20483 bunny (304MB) and a highly detailed level set CSG bunny (1.62GB) modeled as an out-of-core CSG intersection
of the 20483 bunny (304MB) with a tiling of 203 smaller bunnies each at resolution 1283 (7.47GB). Reported sizes are in uncompressed DT-Grid format. Peak
storage requirements for the morph are close to 5GB.

Table VI.
Benchmark Numbers From the “Enright test”. The Table Provides the Number of

Grid Cells in the Narrow Band of the DT-Grid, the Number of Particles Used by the
Particle Level Set and the Memory Footprint of the Simulation with and without

Quantization. The Numbers Given in this Table are Calculated at the First Iteration
of the Simulation

8003 10243 15003 40963

Number of Grid cells 2.35M 3.85M 8.26M 61.6M
Number of Particles 34.6M 56.7M 122M 910M
Simulation Memory Footprint 1.22 GB 2.20 GB 4.4 GB 32.1 GB
Simulation Memory Footprint (quantized) 428 MB 772 MB 1.55 GB 11.3 GB

9.1 Shape Modeling and Deformations

The rightmost image in Figure 12 shows a highly detailed level set
model of a bunny (1.62GB) modeled as an out-of-core Constructive-
Solid-Geometry (CSG) intersection between a level set bunny at
resolution 20483 (304MB) and a 203 tiling of similar smaller level
set bunnies each at resolution 1283. The total size of the tiling of
level set bunnies is 7.47GB. The sizes are in uncompressed DT-Grid
format. Figure 12 depicts three frames from a shape metamorphosis
between the CSG bunny and the bunny at resolution 20483. The
simulation was run in 32bit Windows XP Pro on a 2.41GHz AMD
machine with 1GB of physical memory and a Western Digital Rap-
tor disk. The peak space requirements for this simulation are close
to 5GB in uncompressed DT-Grid format. The simulation was run
out-of-core at approximately 65% of the peak in-core DT-Grid per-
formance. Note that for large simulations like this, OS paging is not
even possible due to OS memory limits for a single application.14

The uncompressed storage-requirements for the entire simulation
were 342 GB. Using the compression method described in this pa-
per we compressed it to 83.6 GB (258 GB saved in total) without
introducing noticeable distortion. The grids were subsequently ren-
dered directly using a ray tracer with ray leaping of the level set.

14In 32-bit Windows XP Pro this is limited to 3 GB.

9.2 Out-of-Core and Compressed Particle Level Sets

To benchmark our out-of-core and compressed particle level set we
use the test from [Enright et al. 2002] where a sphere with radius
0.15 is placed in a unit computational domain at (0.35, 0.35, 0.35)
and advected in the following periodic and divergence free velocity
field [LeVeque 1996]

u (x, y, z) = 2sin2 (πx) sin (2πy) sin (2π z) cos (π t/T )
v (x, y, z) = −sin (2πx) sin2 (πy) sin (2π z) cos (π t/T )
w (x, y, z) = −sin (2πx) sin (2πy) sin2 (π z) cos (π t/T ) ,

(1)

where T is set to 3. In Table VI we list information about the size
of the particle level set used to represent the sphere. Table VII sum-
marizes the results when the simulation is run on a 2.4 GHz AMD
CPU with 2 GB of paired DDR400 memory and a 300GB Maxtor
SATA disk. The numbers provided are the average time per iteration
divided by the number of grid cells15 used by the simulation. This
gives a good measurement of the performance of the particle level
set since all our particle level set operations scale with the number
of grid cells in the narrow band. Table VII clearly shows that the

15The number of grid cells is measured in millions.
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Table VII.
Benchmark Numbers Showing Average Iteration

Time Divided by the Number of Grid Cells
(measured in millions) for Different Resolutions of

the “Enright test”. Each Value is Based on an
Average of the First 7 Iterations of the Solver. (Q)
Means that Our Quantized Particle Level Set was

Used. In-Core Tests were Not Possible (NP) Due to
Hardware Limitations for the 40963 Simulation and

Only Possible Using Quantization for the 15003

Simulation
8003 10243 15003 40963

In-Core 23.1 238 NP NP
Out-Of-Core 67.4 74.1 99.3 113
In-Core (Q) 24.1 24.3 25.4 NP
Out-Of-Core (Q) 24.4 26.0 26.4 39.4

in-core performance decreases drastically when the simulation runs
out of memory and is forced to rely on OS page-swapping. Even
though the 10243 simulation uses only slightly more than the avail-
able 2GB of memory, the performance has decreased significantly
compared to the one at 8003. This is most likely because the OS can-
not predict which memory pages will be accessed next and therefore
inadvertently swaps out data that is soon needed again. Note also
that for all benchmark resolutions the performance of the quantized
out-of-core particle level set is close to that of the in-core. Part of
this is caused by the in-core caching of data, but at large resolutions,
like 40963, this effect is naturally less significant.

9.3 Fluid Simulations

To showcase the capabilities of our out-of-core and compression
framework we have use it for large-scale fluid animations. Our fluid
solver is based on the Stable Fluid method of [Stam 1999] solved on
staggered volumetric DT-Grids similar to Houston et al. [2006]. Our
out-of-core and compressed particle level set is used to represent the
fluid interface and the out-of-core level set framework is used for
solid boundaries and surface velocities.

We present two fluid simulations of a fountain, the first with the
solid boundary level set sampled at a resolution of 471 × 495 × 471
voxels and the second at the resolution 931 × 1007 × 931 voxels.
These will be referred to as respectively the Fountain and Large
Fountain simulations. Both of these simulations were performed on
a 2.4 GHz AMD CPU with 2GB of memory and 300GB Maxtor
SATA disk. Figures 1 and 13 show snapshots from the Fountain
simulation and Figure 14 shows a snapshots from the Large Fountain
simulation. The effective simulation domain needed to enclose the
Fountain simulation is 471 × 1078 × 471 voxels. For the Large
Fountain 931 × 1567 × 931 voxels are needed.

9.4 Out-of-Core Scan Conversion

Based on Sean Mauch’s thesis work [2003], Houston et al. [2006]
developed an efficient mesh to level set scan converter. Specifically
it converts a closed oriented 2-manifold polygonal meshes into a
narrow band signed distance field representation using O(F + D)
time and memory, where F and D denote respectively the number
of faces in the mesh and the number of grid points in the narrow
band. However, this algorithm only works in-core, and consequently
resolutions of the input mesh and output level sets are limited by
the available memory. In fact for most models used in this paper
resolutions either exceed the virtual memory limits or result in OS

page swapping. To address this problem we have developed an out-
of-core extension to the method of Mauch [2003]. This extension
allows us to scan convert manifold mesh models into level sets of
unprecedented resolution. The only limitation on the sizes of input
meshes and output level sets is the available disk space. As can be
surmised from Table IX our out-of-core scan converter outperforms
in-core equivalents when model resolutions exceed the available
memory. Note also that the running times of the in-core scan con-
verter increases rapidly when the memory limit is approached. When
scan converting the bunny at 30003, the out-of-core scan converter is
roughly four times faster than the in-core scan converter. To the best
of our knowledge this is the first demonstration of a scan converter
that works fully out-of-core.

Our out-of-core algorithm begins by sorting the input mesh to
create a list of faces each represented by the vertex coordinates.
This list of faces is next used to partition the mesh into a number of
submeshes. Each submesh is then scan converted in-core using the
method of Mauch [2003], and the generated grid points are streamed
to disk. When all sub-meshes have been scan converted, the collec-
tion of generated grid points are sorted into (x, y, z) lexicographic
order using an external sort. The lexicographic order is required for
the construction of an out-of-core DT-Grid which constitutes the
final step. More specifically our algorithm performs the following
steps:

(1) The input mesh file is assumed to be a simple indexed triangle
set such as ply or obj. As a prelude to the mesh partitioning we
dereference all the vertex indices of the faces and create a list
of faces, l f , where each face is represented by the coordinates
of its three vertices. Doing this naively using random access
will in the worst case result in O(F) I/O operations, where F
is the number of faces, since each index may reference a vertex
currently on disk. Instead we can create the list of faces by
applying a number of external sorts similar to Chiang and Silva
[1997]. This can be done in O

(
F
B logM/B

F
B

)
I/O operations,

where F is the number of faces, M is the memory size and
B is the number of faces per disk block. The time complexity
is O(F log F). Briefly described, the dereferencing works as
follows: First we sort the list of faces according to the first
vertex index of each face. Next we simultaneously scan through
the sorted list of faces and the list of vertex positions and replace
the first vertex id of each face with its actual vertex coordinate.
This step is subsequently repeated for the second and third
index of each face respectively. The result is the list of faces,
l f , represented by their coordinates required for partitioning
the mesh.

(2) Next the mesh is partitioned into P × Q × R submeshes. P , Q,
and R depend on the amount of available memory, and in gen-
eral they are simply determined heuristically. The (p, q, r )′th
submesh consists of all the faces intersected by the (p, q, r )′th
subvolume resulting from dividing the bounding box of the
mesh into P × Q × R equally sized axis-aligned and nonover-
lapping subvolumes. To do the actual partitioning, a single scan
through the list of faces determines for each face which subvol-
umes it intersects. During this scan, data is streamed into a file,
f , containing 7-tuples consisting of the three vertex indices,
the coordinates of the three vertices, and the subvolume id that
this face maps into. Assuming that at most a constant number of
subvolumes intersect each face, the partitioning step requires
O( F

B ) I/O operations and has a time complexity of O(F).
(3) To apply the method of [Mauch 2003], all of the submeshes are

first converted into individual indexed face sets. This is done
by a single external sort and a subsequent scan through the
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Table VIII.
Scan Conversion Statistics for the Out-of-Core 2-Manifold Scan Converter. The Statistics are Divided Into Three

Categories: Timings, Storage Requirements and the Narrow Band Grid-Point Count. The Timings Include the Mesh
Load and Partitioning Time (Mesh L&P), Actual Scan Conversion Time (Scan Conv), Lexicographic Sort Time (Lexi

Sort) and DT-Grid Construction Time (DTGrid Const). The Storage Requirements Include the Original Mesh (Mesh I),
the Intermediate Sub-Mesh Structure (Mesh II), the Index-Value Container (IVC) Storing 4-Tuples of Grid Point

Indices and Corresponding Values (see step 5 below), and the Final (uncompressed) DT-Grid (DT-Grid). The
Explanations of the Steps Involved in the Timings and the Representations for Which Storage Sizes are Given can be

Found Below. The Narrow Band Width γ = 3. All Models are Courtesy of the Stanford Scanning Repository
Time [min:sec] Size [MB]

Mesh Scan Lexi DTGrid Mesh Mesh Grid-point

Model L&P Conv Sort Const Tot I II IVC DTGrid Count ×109

Lucy, #faces = 28055742, #vertices = 14027872
35000 × 20000 × 11500 70:50 278:24 839:40 198:21 1387:15 482 591 108060 36070 7.08
David, #faces = 7227031, #vertices = 3614098
29500 × 12000 × 7000 12:58 146:06 465:51 108:12 733:09 124.1 159.0 62325 20991 4.08
Bunny, #faces = 70064, #vertices = 35034
12000 × 12000 × 9500 0:07 179:29 272:04 54:37 506:17 1.203 3.652 31619 10307 2.07
Buddha, #faces = 1087716, #vertices = 543652
24500 × 10000 × 10000 1:40 318:01 617:30 143:14 1080:30 18.67 32 77340 27910 5.07

Table IX.
Comparison of Timings (measured in seconds) Between the In-Core and the

Out-of-Core Scan Converters for Scan Converting the Stanford Bunny in Increasing
Resolution with a Narrow Band Width of γ = 3. The Size in MB of the Uncompressed

DT-Grid is Given Below the Resolution. Using the In-Core Scan Converter it is Not
Possible (NP) to Scan Convert the Stanford Bunny in Resolution 40003 Because the

Overall Memory Usage of Mesh, Level Set and Intermediate Data Structures Exceed the
Virtual Memory Limits. The DT-Grid Construction is Time Not Included Since the
In-Core Scan Converter is Not Capable of Generating the DT-Grid for Resolutions

Equal to and Above 30003 Due to Virtual Memory Limits
2503 5003 10003 20003 30003 40003

Method 4.005 MB 16.97 MB 69.80 MB 283.1 MB 655.2 MB 1718 MB

In-Core 4.375 7.453 24.72 153.9 4227 NP
Out-Of-Core 10.20 21.25 67.61 423.1 1096 2049

sorted tuples in f . First the 7-tuples in f are sorted according
to their subvolume id. Next a scan through f generates an in-
dexed mesh representation for each sub-mesh. Since f is sorted
according to sub-volume id, the generation of a new sub mesh
commences as soon as a new sub volume-id is encountered.
Internally for each sub mesh, local vertex and face indices are
created with the use of a map data structure mapping from
global to local indices. The individual indexed sub meshes
are progressively streamed to disk. Again this step requires
O

(
F
B logM/B

F
B

)
I/O operations and has a time complexity of

O(F log F).
(4) Next the in-core scan converter of [Mauch 2003] is separately

applied on each sub mesh. The coordinates of the narrow band
grid points and associated signed distance values generated for
each sub mesh are streamed to disk as 4-tuples {x, y, z, φx,y,z}.
This is done in a way similar to Houston et al. [2006] which
ensures an O(F + D) time usage of the entire algorithm, where
D is the number of defined grid points in the narrow band. The
peak memory consumptions of the algorithm corresponds to
the size of the largest sub mesh plus the size of a single sub
volume. In terms of I/O operations the complexity of this step
is O( F+D

B ).

(5) Finally the 4-tuples generated above are sorted into (x, y, z)
order using a single external sort and the out-of-core level set
is constructed by sequentially inserting grid points into the lex-
icographic data structure of a DT-Grid. Due to the external sort
of grid points, this step requires O

(
D
B logM/B

D
B

)
I/O operations

and has a time complexity of O(D log D).

Note that steps (3) and (4) can be performed simultaneously such
that a submesh is scan converted as soon as it is generated. In this
way, it is not necessary to stream the submeshes to disk.

For large grids, the external sorting in Step 5 is usually the most
time-consuming due to the large number of narrow band grid points
generated. For the models in Table VIII, the number of grid points are
on the order of billions. Hence it is important to sort the grid points
using only a single pass over the file as opposed to three passes. In
our experience this gives a factor of 2.5 improvement in the time
spent on sorting. In practice the size of the sub volumes can just
be set to a heuristically determined size. For the scan conversions
presented in this paper we use a fixed subvolume of size 2563. Our
method uses a fairly large amount of intermediate disk space, but
storage requirements are still linear in the number of mesh faces and
narrow band grid points. The disk requirements can be reduced by
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Fig. 13. Fluid simulation with an effective bounding box of 471 × 1078 ×
471. The scene contains a total of 43.1M voxels and 573M particles.

means of compression and a more compact sorting like Matias et al.
[2000]. This will however increase running times.

Table VIII lists several high resolution level set models and scan
conversion times. All scan conversions were done on an AMD
2.41GHz machine with 1GB of main memory and a Western Digi-
tal WD4000YR hard disk. The highest resolution model is the Lucy
which was scan converted into a 35000 × 20000 × 11500 narrow
band level set containing 7.08 billion grid points in the narrow band.
To the best of our knowledge this resolution is about an order of mag-
nitude larger than previously demonstrated in each dimension. We
realize that some of the models in Table VIII are over sampled in
terms of triangle to voxel resolution and the high resolutions are
meant merely to illustrate the power of the out-of-core framework.

9.5 Out-of-Core Linear Algebra

Systems of linear equations are often encountered in computer
graphics applications. Examples include solving the Poisson equa-
tion in the pressure projection step of the stable fluids method Stam
[1999] as well as integrations in time or space employing implicit
techniques like backward Euler or Crank-Nicholson. Typically these
systems of linear equations are sparse and positive definite which
means they can conveniently be solved using techniques like the
conjugate gradient (CG) method [Hestenes and Stiefel 1952]. This
iterative algorithm, and several others like Gauss-Seidel, works by
successively performing matrix vector operations until some con-
vergence criteria are satisfied.

Fig. 14. Fluid simulation with an effective bounding box of 931 × 1567 ×
931. The scene contains a total of 61.7M voxels and 332M particles.

Given the fact that our framework facilitates level set models of
sizes that far exceed the available memory it is therefore important to
have access to an out-of-core linear algebra library. To achieve this
we have augmented our out-of-core framework with a matrix vector
library supporting standard linear algebra operations. Specifically
we only consider algebraic operations that can be formulated using
sequential stencil access patterns to the elements of the matrices and
vectors. This is to avoid inefficient random access in the underlying
out-of-core data structure on disk. Fortunately, as in the case of
level set operations, most matrix vector operations are inherently
sequential.

Our implementation is based on the same out-of-core array that
stores scalar distance values in the level set framework. It maps
currently accessed parts of an array to in-core pages and streams
the remaining data to disk. It has been extended with out-of-core
vector and matrix classes that supports basic operations like +, −, ∗,
norms and dot-products. Our linear algebra library also supports the
following sparse storage formats: Coordinate storage, compressed
row storage, and diagonal banded storage.

We have made an extra effort to optimize a special sparse septa-
diagonal matrix class since it is used extensively in the application
discussed in the next section. We make the following constraint for
this matrix class: Each of the column indices of the seven nonzero
elements on each row is increasing between two consecutive rows.
This constraint is naturally fulfilled by matrices derived from the dis-
cretization of linear operators on structured lexicographic grids like
dense grids or sparse DT-Grids. It is important since it implies that
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the spacial coherency of a differential operator is preserved during
discretization. This in turn means we can utilize the stencil iterators
derived for cache-efficient access during level set operations.

Specifically the sparse septa-diagonal matrix is optimized to use
less storage than a corresponding compressed row storage format,
and in addition calculate matrix vector multiplications (Ax = b)
while looping over the x vector and the matrix A only once. This
is feasible by using stencil access into x. To see this consider row
ri of the multiplication Ax. The seven nonzero elements of A are
multiplied with corresponding elements of x and the sum is formed.
Next, to compute row ri+1 of Ax the column index of each of the el-
ements in the row is incremented by at least one. The corresponding
indices into x follow the same incremental access pattern. By em-
ploying a stencil of iterators in x we can perform the multiplication
with a single stencil pass. The upper bound for a 7-point sequential
stencil iteration is 7 passes. Using the out-of-core framework this
number comes close to optimal in practice. Similar behaviors were
discussed in section 5 and 8.1. We finally note that similar optimized
matrix vector multiplication schemes can readily be derived as long
as the matrix satisfies the simple constraint mentioned above.

To evaluate the performance of our out-of-core matrix vector li-
brary we have used a conjugate gradient reference implementation,
SparseLib and IML++ [Dongarra et al. 1994], and benchmarked
our sparse septa-diagonal matrix against the compressed sparse row
matrix bundled with IML++. The physics behind the system of
linear equations used in this benchmark is discussed in the next sec-
tion. For now it suffices to say that the matrices are septa-diagonal
and the systems are solved to the same precision.16 The results are
shown in Table X and clearly demonstrate the performance of the
out-of-core matrix vector library. For reasonable in-core sizes the
SparseLib classes naturally perform better, whereas the out-of-core
counterpart is 50% slower. However, as the size of the system of
equations increases beyond the available main memory the advan-
tage of the out-of-core library is evident. Whereas the in-core solver
suffers from considerable slowdown the throughput rate of the out-
of-core solver is almost unaffected. Additionally, the out-of-core
solver is not hampered by main memory address space limitations:
We show simulations that would need to allocate approximately
9 GB of memory. Simulations of this size are not possible to run
with algorithms that rely on 32-bit OS paging such as the Krylov-
subspace method by Toledo [1995]. We conclude that with our out-
of-core linear algebra library it is possible to solve very large sparse
linear systems at roughly a sixth of the peak in-core speed. At this
point, however, most of the matrix vector operations are I/O bound
and a combination of a specialized method such as Toledo’s and our
high performance matrix vector library could prove fruitful but is
left for future work.

9.6 Solving PDEs on Large Implicit Surfaces

As an out-of-core application of our framework we demonstrate how
we can solve PDEs directly on large level set surfaces. Specifically
we solve the wave-equation embedded on a surface which can be
expressed as [Xu and Zhao 2003]

∂2 f
∂t2

= ∇2
s f = ∇2 f − ∂2 f

∂n2
− κ

∂ f
∂n

(2)

where ∇2
s f is the surface Laplacian of some quantity f (e.g., pres-

sure) embedded on a level set surface, φ, κ = ∇ · ∇n is the mean
curvature of φ and ∂/∂n denotes the directional derivative along the

16Note however that the amortized throughputs listed in Table X are inde-
pendent of the precision.

Table X.
Benchmarking the Solution of Equation Systems Using the

Conjugate Gradient (CG) Algorithm with Different Data
Structures. Performance is Measured as Throughput Grid Points
Per Second. Specifically the Amortized Throughput Over a Full
Solution: Number of CG Iterations Times Number of Unknowns

Divided by Time in Seconds. Memory Footprint Denotes the
Theoretical In-Core System and Includes an Uncompressed

DT-Grid. Timings were Performed on a Macintosh G5 2.5GHz
with 2GB Main Memory and a Western Digital WD1600JD Hard

Drive
Model Memory Unknowns O OC MV Sparselib

Sphere 1003 4MB 40K 107K 1.5M
Bunny 2563 70MB 840K 970K 2.2M
Tog logo 10243 520MB 6.1M 1.3M 2.2M
Bunny 10243 2GB 28M 360K 150K
Tog logo 40963 9GB 110M 320K N/A

surface normal n = ∇φ/|∇φ|. This second order time-dependent
partial differential equation describes the propagation of a wave
embedded on a level set surface. To eliminate the last two terms
in Equation (2) we simultaneously solve the transport equation
∂ f/∂t = S(φ)∂ f/∂n till steady state, so that ∂ f/∂n = 0. S(φ)
is simply a sign function of φ that guarantees that information prop-
agates in the correct direction, i.e., away from the surface. For in-
creased performance we employ an implicit Crank-Nicholson time
discretization scheme that is unconditionally stable. To avoid ex-
cessive storage usage the simulated scalar fields can be compressed
with any of our codecs. For this type of scalar field we have found
the Lorenzo predictor to perform best. It can compress 14-bit quan-
tized data down to 3 bits per grid point value without visual artifacts.
Examples of the wave equation propagating on complex geometry is
shown in Figures 15, 16, and 17. Note that the former visualizes the
scalar field f as actual 3D displacements of the geometry, whereas
the latter two uses a simple color map of f .

10. CONCLUDING REMARKS

We have presented a novel level set framework that for the first time
allows representation and deformation of extreme resolution mod-
els, the only limitation being the amount of available disk space. Our
applications include fluid animations, shape modeling and transfor-
mations, scan conversion, and the solution of the wave equation on
large surfaces. The framework is based on two key components:
out-of-core data management and compression. The main contri-
butions of the out-of-core component is an application-specific and
near optimal paging policy as well as a fast prefetching algorithm.
The compression component contributes with codecs optimized for
level set distance values, topology as well as associated scalar fields
and particles. The performance of level set simulations in our out-
of-core component combined with compression of topology was
shown to be 50%–65% of the peak performance of the original in-
core DT-Grid which in turn has been shown to outperform other
state-of-the-art level set data structures [Houston et al. 2006]. The
performance of the out-of-core component is preserved for sim-
ulations at resolutions that far exceed physical memory. In con-
trast the performance of the normal in-core DT-Grid was shown
to dramatically decrease until the OS virtual memory limit pre-
vented the simulation from running. Benchmarks indicate that our
application-specific compression scheme is better and faster than
a related volumetric band compression method. It should be noted
that our framework is intended for very large level set simulations,
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Fig. 15. The wave equation simulated on detailed 3D text. Distribution of pressure is visualized both through the displaced surface and surface properties.
Resolution of model 512 × 250 × 200.

Fig. 16. The wave equation on highly detailed manifold. Resolution of model 1024 × 250 × 50. Distribution of pressure is visualized by color coded surface
properties.

Fig. 17. Evolution of the wave equation on 10243 Stanford Bunny model. Distribution of pressure is visualized by color coded surface properties.
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given the fact that it obviously cannot outperform pure in-core sim-
ulations given sufficient memory. The out-of-core and compression
approach taken in this paper is not the only means for increasing
the resolution of level set and fluid simulations. In particular par-
allelization techniques utilizing several computational nodes have
recently been demonstrated [Irving et al. 2006; Geiger et al. 2006].
This effectively increases the total amount of memory available for
simulation. We stress that our techniques should not be seen as an
alternative to these parallelization methods, in fact combining them
is a promising direction for future work. In addition we intend to in-
vestigate out-of-core, compression and parallelization techniques in
the context of adaptive level set methods where the grid cell size can
vary along the interface hence potentially increasing performance
even further [Milne 1995; Sussman et al. 1999; Tang et al. 2003].

Our framework is primarily optimized for the sequential data
access patterns encountered in level set simulations. Nevertheless,
almost all of the applications included in this paper completely avoid
random access. The only exception is ray-tracing, for which we are
currently exploring improved prefetching strategies. We also note
that simultaneous access to multiple out-of-core data structures will
generally reduce performance due to the latency of disk seeks. We
are currently investigating this by exploring strategies for automat-
ically assigning resources when several out-of-core data structures
are in play simultaneously. Our work addresses some of the ma-
jor memory bottlenecks in fluid animations, namely particle level
sets for the fluid interface, large boundaries and surface velocities.
The out-of-core particle level set method as described in this paper
is limited to particles moving at most one grid cell per iteration.
Extending it to semi-Lagrangian advection techniques is straight-
forward as long as the maximum distance traveled by a particle is
limited to a few grid cells. This is the case when utilizing narrow
bands. However, we note that it will require iteration with larger
stencils and require more bits to represent the quantized particles
with the same precision. Hence we leave an investigation of the
performance of such a method for future work. Furthermore, our
particle level sets do not employ any strategies for adaptive particle
seeding. Though such strategies can easily be used in conjunction
with our compressed and out-of-core particle level sets, we leave
this for future work. It should be stressed that this article does not
focus on streaming and compression of the volumetric fluid velocity
and pressure fields. These volumetric fields are already represented
on DT-Grid data structures and hence immediately amenable for
streaming and compression in our framework. However, due to the
larger scope of this project we plan to report on this in a future paper.

In closing, we strongly believe our framework to have a signif-
icant impact in several key areas in computer graphics, including
but not limited to, high-resolution fluid simulations and geometric
modeling.
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