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Fig. 1. Dam breach. Water pours in from a reservoir and slowly erodes a dam. As water seeps into the sand, its cohesivity decreases. When it eventually
breaks, the landslide creates interesting dynamics in the debris flow.

We present a multi-species model for the simulation of gravity driven land-
slides and debris flows with porous sand and water interactions. We use
continuum mixture theory to describe individual phases where each species
individually obeys conservation of mass and momentum and they are cou-
pled through a momentum exchange term. Water is modeled as a weakly
compressible fluid and sand is modeled with an elastoplastic law whose
cohesion varies with water saturation. We use a two-grid Material Point
Method to discretize the governing equations. The momentum exchange
term in the mixture theory is relatively stiff and we use semi-implicit time
stepping to avoid associated small time steps. Our semi-implicit treatment is
explicit in plasticity and preserves symmetry of force linearizations. We de-
velop a novel regularization of the elastic part of the sand constitutive model
that better mimics plasticity during the implicit solve to prevent numerical
cohesion artifacts that would otherwise have occurred. Lastly, we develop
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1 INTRODUCTION
While wet sand is both ubiquitous and literally child’s play, simulat-
ing the underlying interaction of water and sand certainly is not. In
fact, this type of visual effect is rarely seen in feature movie produc-
tions, typically because it is considered too complex and difficult
to achieve with existing particle-based simulation techniques. This
is surprising given that water simulations, and to a lesser extent
also sand simulations, are routinely undertaken in VFX. It is the
complex nature of the changing material behaviors resulting from
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Fig. 2. When the levee breaks. Here we demonstrate the effects of our parameters on levee wall integrity. A simulation with lower drag momentum exchange
coefficient and lower cohesion will fail more easily.

the mixing of sand and water that complicates simulation. However,
we argue that this is precisely what makes the animation of wet
sand so visually intriguing and hence desirable to master.
Most practitioners in the VFX industry would agree that anima-

tion of water is amature area of research, as evident by its abundance
and the fact that several excellent commercial solutions exist today,
c.f. Houdini, Maya, and RealFlow just to mention a few. Conversely,
animation of sand is considered challenging by most, and is still a
subject of significant research. Although the Material Point Method
(MPM) [Sulsky et al. 1995] has been demonstrated to produce en-
couraging results for sand simulations, commercial solutions tend
to use simpler particle based techniques, like Position Based Dy-
namics (PBD), which is easier to implement, but less well founded
in continuum theory. However, mixtures of water and sand present
a completely new set of simulation challenges for which, to the
best of our knowledge, there is still no established best practice in
VFX, let alone off-the-shelf commercial solutions. While there are
many successful examples of wet sand animation, they tend to be
based on art-directed constrained simulations or even procedural
particle systems. Given the success of simulating sand with MPM it
is natural to explore a similar approach for wet sand. Such a unified
MPM description of the mixing of water and sand is exactly what
motivated our work.

In this paper, we develop amethod formulti-speciesMPM to allow
interactions between sand and water for gravity driven landslides
and debris flows. We resolve wet sand transitions from cohesive
rigid grains to flowing slurries as water saturation increases. We use
a semi-implicit time stepping scheme to deal with stiff terms in the
multi-species momentum exchange. The semi-implicit approach in
[Stomakhin et al. 2013] produces artificial cohesive effects for sand
simulations. We introduce a unilateral modification to the elastic
energy function that better mimics the effect of plasticity to pre-
vent these cohesive artifacts. Furthermore, we develop an improved
return mapping for Drucker-Prager plasticity that reduces the vol-
ume gain observed with lower grid resolutions. In our multi-species
treatment, we use the two grid scheme proposed by Bandara and
Soga [2015]. Each material point is associated with a set of grid

nodes and the interaction between the two species is via an inter-
action term proportionate to relative velocity between the phases.
This term is stiff for practical porosities, and it is impractical to do
explicit simulation since it would require a time-step restriction
on the order of ∆t ≈ 10−6 − 10−5. Our semi-implicit treatment al-
lows us to use a time step on the order of ∆t = 10−3. Furthermore,
using our modification to the elastic energy function and lagged
plasticity approach, the system to be solved remains symmetric. We
summarize our contributions as:

• A unilateral elastic constitutive model modification frame-
work that removes numerical cohesion with semi-implicit
time stepping and plasticity.

• An improved return mapping algorithm for Drucker-Prager
plasticity with reduced volume gain artifacts.

• A semi-implicit two grid MPM discretization of stiff inter-
action terms in multi-species continuum equations.

• A model for wet sand cohesion based on water saturation.

2 PREVIOUS WORK
Probably the earliest work on water and sand in computer graphics
is by Peachey [1986]. Rungjiratananon et al. simulate sand-water
interaction in real-time using a hybrid Smoothed Particles Hydro-
dynamics (SPH) and Discrete-Element Method (DEM) approach
[Rungjiratananon et al. 2008]. Lenaerts and Dutre [2009] also couple
water with porous granular materials using SPH. Notably, these
approaches capture a wider range of porous phenomena than that
considered in our approach. While we focus on gravity driven land-
slides and debris flows, their approaches more accurately capture
surface tension driven effects like capillary action drawing water
into dry sand. They can also handle landslides and debris flows, but
they do so with SPH, whereas we develop an MPM approach that
naturally allows for implicit time stepping and high resolution simu-
lation. Other graphics approaches have shown the efficacy of hybrid
Lagrangian/Eulerian approaches like FLIP and MPM, including sand
[Daviet and Bertails-Descoubes 2016; Klár et al. 2016; Narain et al.
2010; Zhu and Bridson 2005] and various other elastoplastic materi-
als [Jiang et al. 2015; Ram et al. 2015; Stomakhin et al. 2013, 2014;
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Fig. 3. Dropping sand on wedges. A box of sand with various values of cohesion is dropped onto a wedge. The top left simulation is done using an explicit
time-stepping scheme, while all the others are done using a semi-implicit time-stepping scheme.

Yue et al. 2015]. Unilateral incompressibility is an effective assump-
tion for granular materials [Alduán and Otaduy 2011; Daviet and
Bertails-Descoubes 2016; Ihmsen et al. 2013; Narain et al. 2010].

Our approach is the first MPM technique in graphics that consid-
ers multi-species modeling for porous sand/water. However, mixture
theory and multi-species simulations have been used for a wide
range of effects in computer graphics. Nielsen and Osterby [2013]
simulate spray andmist with a two-continuamixturemodel. Takashi
et al. [2003] use the Cubic Interpolation Propagation method to cou-
ple spray, water and foam continua. Losasso et al. [2008] and Yang et
al. [2014] also represent spray and dense water with multiple phases.
Similar multi-species interaction ideas have been used for bubbles
in incompressible flow [Mihalef et al. 2009; Ren et al. 2015; Song
et al. 2005; Thürey et al. 2007]. Liu et al. [2008] use two continua to
simulate mixtures of air and dust. Multi-species approaches have
been used for miscible and immiscible fluids [Bao et al. 2010; He
et al. 2015; Kang et al. 2010; Ren et al. 2014; Yang et al. 2015].

Various researchers in engineering have shown the efficacy of sim-
ulating water and soil interactions with the MPM. Abe et al. [2014]
solve coupled hydromechanical problems of fluid-saturated soil sub-
jected to large deformation with a two grid MPM algorithm based on
Biot’s mixture theory. Bandara et al. use a single grid MPM method
for saturated and unsaturated soils that undergo large deformations
in [Bandara et al. 2016] and two grid MPM to represent soil skeleton
and porewater layers in [Bandara and Soga 2015]. Jassim et al. [2013]
also develop a two grid MPM approach for soil mechanics problems.

Mast et al. [Mast et al. 2014] use MPM to simulate large deformation,
gravity-driven landslides of porous soil. Mackenzie-Helnwein et
al. [2010] examine the multi-species momentum exchange terms for
problems with liquefaction, landslides, and sedimentation with two
grid MPM.

3 MATHEMATICAL BACKGROUND
We model sand and water as a multi-species continuum using mix-
ture theory [Atkin and Craine 1976; Borja 2006]. With this approach,
each species is given distinct material properties, and their motion is
derived from distinct velocity fields. This kinematic assumption al-
lows sand and water to occupy the same points in space at the same
time to create the mixture. We use superscript s to represent sand
quantities and superscriptw to represent water quantities. With this
convention, the primary state is defined in terms of mass density
ρα (x, t ) and material velocity vα (x, t ), where α = s,w . The momen-
tum density of phase α is given by ρα vα . The total mass density of
the mixture is the sum ρ = ρs + ρw and total momentum is the sum
ρv = ρsvs + ρwvw . This defines the velocity v = 1

ρ (ρsvs + ρwvw )

of the mixture as the mass-averaged velocity of the constituents.
Each species obeys the following conservation of mass with re-

spect to its own motion

Dα ρα

Dt
+ ρα∇ · vα = 0. (1)
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Fig. 4. 2D dam breach. A 2D dam breach simulation showing the effect of reversible term from Bandara and Soga [Bandara et al. 2016]. The figure depicts
the beginning, middle, and the end of a dam breach scenario. At the top is a simulation with no reversible term (as in [Mackenzie-Helnwein et al. 2010]) and at
the bottom is a simulation with the reversible term.

Here the operator Dα f
Dt =

∂f
∂t + vα · ∇f is the material (or total)

derivative of function f with respect to the motion of either the sand
(α = s) or water (α = w) phases. By summing over α in Equation 1,
we obtain the standard conservation of mass

Dρ

Dt
+ ρ∇ · v = 0, (2)

by noting that ρ DfDt =
∑
α ρ

α Dα f
Dt where Df

Dt =
∂f
∂t + v · ∇f is the

material derivative of function f with respect to the motion of the
mixture. Each species also obeys conservation of linear momentum
as

ρα
Dα vα

Dt
= ∇ · σα + pα + ρα g, (3)

where pα represents the transfer of momentum due to the relative
motion of the constituents, σα is the partial stress tensor associated
with species α , and g is the gravitational acceleration. Because
pα represent the exchange of momenta between species, the sum∑
α pα = 0 must be zero to not affect the total linear momentum of

the mixture. Indeed with this constraint we can show by summing
over α in Equation 3

ρ
Dv
Dt
= ∇ · σ + ρg, (4)

where we have summed over α and introduced σ =
∑
α σα , which

denotes the Cauchy stress in the mixture expressed as the sum of
the partial stresses in each species. In other words, with this notion
of the Cauchy stress, conservation of linear momentum for the
individual species implies conservation of linear momentum for the
mixture.

3.1 Sand elastoplasticity
We define the constitutive behavior of sand with elastoplasticity as
in Klár et al. [2016]. However, their approach was for dry sand. Wet
sand is capable of retaining its shape via tensile stresses and the
unmodified Drucker-Prager yield condition does not admit this. We
modify the model slightly to include cohesive stresses. The amount
of cohesion varies with the saturation level of water in the mixture.
We assume that the sand partial stress σ s is defined in terms of the
hyperelastic potential energy densityψ s as

σ s =
1

det(Fs )
∂ψ s

∂F
(Fs,E )Fs,E

⊤
. (5)

Here, Fs is the deformation gradient of the sand motion, which
evolves as Ds

Dt F
s = ∇vsFs . The appearance of the 1

det(Fs ) and F
s,E⊤

terms arise because wewrite the potential energy density in terms of
the deformation gradient. With this convention, its derivative gives
rise to the first Piola-Kirchhoff stress and these terms are needed
to transform it into the Cauchy stress. As typically done in finite
strain elastoplasticity [Bonet and Wood 2008], it is decomposed into
Fs = Fs,EFs,P to define a plastic flow. For sand, Fs,E represents
the remembered compression and shearing, while Fs,P represents
the forgotten sliding and separation. We use the Drucker-Prager
[Drucker and Prager 1952] plastic flow and yield condition to de-
termine the evolution of the elastic (Fs,E ) and plastic (Fs,P ) parts
of the deformation gradient. The Drucker-Prager yield condition
is defined from the constraint that the shear stress should be no
larger than the compressive normal stress in all directions. This
expresses a mechanical interaction that is consistent with Coulomb
friction. While dry sand is modeled effectively with this assumption,
it precludes the effects of cohesion. However, cohesive effects can
be modeled by modifying the elastic stress yield condition to be

cF tr(σ s ) + ∥σ s −
tr(σ s )

d
I∥F ≤ cC , (6)

where d = 2, 3 is the spatial dimension, cC ≥ 0 increases with
the amount of cohesion in the material and cF ≥ 0 increases with
amount of friction between grains. E.g. for dry sand in Klár et
al. [2016] they used cC = 0. A positive cC shifts the yield surface
along the hydrostatic axis (the line where tr(σ s ) = 0), which allows
the material to exhibit stress under tension and thus cohere to itself.
Here we model cohesivity as a function of water saturation in the
sand. This is naturally measured in terms of the volume fraction of
water in the mixture ϕw = ρw

ρ so that cC = cC (ϕw ).
Inequality 6 is referred to as the plastic yield condition, if it is

satisfied, there will be no further plastic deformation. The boundary
of the region in stress space defined by cF tr(σ s )+ ∥σ s −

tr(σ s )
d I∥F =

cC (ϕ
w ) is called the yield surface. For states of stress on the yield

surface, plastic flow will commence when a perfectly elastic assump-
tion would drive the stress out of the region. The plasticity functions
as a means of satisfying this inequality constraint.

3.1.1 Unilateral hyperelasticity. Here we describe the elastic part
of the constitutive behavior for the sand phase. This is largely
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Fig. 5. Multiplier region. The contour plot of the multiplier in strain space.
Region A is where themultiplier is equal to 1, region C is where themultiplier
is 0, and region B is where the multiplier transitions from 1 to 0 in a C2

manner. The green cone denotes the Drucker-Prager cone in principal strain
space.

the same as in Klár et al. [2016] where the elastic potential en-
ergy density is defined in terms of the logarithmic strain ϵ as
ψ s (Fs ) = ψ̃ s (ϵ ) = µtr(ϵ2) + λ

2 tr(ϵ ) where Fs = UΣV is the sin-
gular decomposition of Fs and ϵ = log(Σ). However, we provide
some novel modifications that allow for more efficient implicit time
integration. We note that with the plastic yield condition from In-
equality 6, much of the energy landscape has no effect since it
produces stresses outside of the yield surface. To mitigate this we
modify the energy density such that it smoothly transitions to zero
in these regions. This has no effect on the continuous behavior of
the governing equations, but it improves the performance of our
semi-implicit time stepping. Essentially, our modification modifies
the elastic behavior outside the yield surface to better resemble the
effects of plasticity.
Our approach is similar to, and indeed inspired by the unilat-

eral approaches in [Alduán and Otaduy 2011; Daviet and Bertails-
Descoubes 2016; Ihmsen et al. 2013; Narain et al. 2010]. We thus refer
to our modified energy as the unilateral energy function ψ̃ s,U (ϵ ).
We define this as the product of the original energy function ψ̃ s (ϵ )
and a multiplier h(ϵ )

ψ̃ s,U (ϵ ) = ψ̃ s (ϵ )h(ϵ ). (7)

The multiplier makes sure that the energy density function to tran-
sition to zero in regions outside of the yield surface (as smoothly as
possible). We define it to be symmetric about the hydrostatic axis in
the strain space (axis of equal strain, see Figure 5) since the original
energy ψ̃ s has this property and we wish to preserve it in ψ̃ s,U . To
construct it, we partition strain space into the three regions labeled
A, B, and C in Figure 5. In region A, the value of the multiplier is
simply one and the modified constitutive model is identical to the
original one. Conversely, in region C, the multiplier is set to zero. In
region B, the multiplier transitions from one to zero in aC2 manner.
The boundary of region A and B defines two envelopes that are
symmetric about the hydrostatic axis. To best preserve the behavior
of sand, we want region A to cover most of the region inside of the
Drucker-Prager cone, illustrated as the green cone in Figure 5.

Fig. 6. Unilateral extension. We demonstrate a 2D sand column collapse
with different values of c0 coefficient in the unilateral modified energy
density function. From top to bottom, c0 = 1.1, 2, 2.5, 3. The left image is
of an early frame and the right is of a later frame. Here parameters a and b
from Equation 10 are a = −0.5, and b = 0. As c0 increases, the envelopes in
the unilateral extension become increasingly poor approximations of the
Drucker-Prager cone and we see volume loss artifacts.

The construction of this multiplier function is done as a compo-
sition of two functions: hs which is a scalar function and f which
is a function of the strain ϵ . If we let o denote the hydrostatic axis
(o = 1√

2
(1, 1)⊤ in 2D or 1√

3
(1, 1, 1)⊤ in 3D), then we can compute

u = ϵ · o to be the component of the strain in the hydrostatic axis
and v = ∥ϵ − uo∥. The function f is defined as

f (ϵ ) = co
v4

1 + |v |3
. (8)

The coefficient co controls the opening of the envelope of regions
A and B around the hydrostatic axis. The scalar functionhs is chosen
so that the multiplier function is twice continuously differentiable,
and is given by

hs (z) =



1 if z < 0
0 if z > 1
1 − 10z3 + 15z4 − 6z5 otherwise.

(9)

The multiplier function is then defined for some choice of param-
eters a,b, and sC .

h(ϵ ) =




1 if u + f (ϵ ) < a + sC
0 if u + f (ϵ ) > b + sC

hs

(
u+f (ϵ )−a−sC

b−a

)
otherwise.

(10)

The parameter a and b determines the intersection of the hydro-
static axis with the boundary of region A and B respectively. The
parameter sC controls a shift of this multiplier region along the
hydrostatic axis.

3.2 Water
We model the water as nearly incompressible [Becker and Teschner
2007] with the partial stress

σw = −pw I, pw = k

(
1

Jwγ
− 1

)
. (11)
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We note that the water pressure is related to a potentialψw as pw =
−
∂ψw

∂ Jw (Jw ), withψw (Jw ) = −k
(
(Jw ) (1−γ )

1−γ − Jw
)
. This pressure pw

is designed to stiffly penalize the volume change of the water phase,
which is characterized in terms of the determinant of the water
deformation gradient Jw = det(Fw ). As with the solid phase, the
fluid deformation gradient evolves according to Dw

Dt F
w = ∇vwFw .

Intuitively, Jw is the ratio of the current to initial local volume of
material in the water phase. It evolves as

Dw

Dt
Jw = ∇ · vw Jw . (12)

Here k is the bulk modulus of the water and γ is a term that more
stiffly penalizes large deviations from incompressibility.

3.3 Momentum exchange
The momentum exchange terms ps , pw for water and porous sand
interactions can generally be viewed as a combination of dissipative
and reversible interactions [Borja 2006]. We follow the formulation
of Bandara and Soga [2016] because, like them, we are concerned pri-
marily with gravity driven flows such as fast catastrophic landslides
and debris flows. Their formulation assumes

ps = cE
(
vw − vs

)
+ pw∇ϕw , pw = −ps (13)

where cE =
n2ρwд

k̂
and n is the sand porosity, k̂ is the sand perme-

ability and д is the gravitational acceleration, ϕw = ρw
ρ is the water

volume fraction and pw is the water pressure. The first term repre-
sents viscous forces generated by sand particles moving through
the fluid. Although it can be conceived from the view of an ideal-
ized particle moving through a Stokes fluid, it simply amounts to a
Coulomb-friction-like response [Mackenzie-Helnwein et al. 2010].
The second term is often called the “buoyancy term" in mixture
theories [Robert and Soga 2013]. It can be conceived from entropy
equilibrium constraints or from the physical consideration that the
pore fluid pressure multiplying the porosity is appropriate notion
of reversible pressure, however there is some debate about its ap-
propriateness outside of immiscible mixtures [Drumheller 2000].
Mackenzie-Helnwein et al. [2010] omit the second term and view
the momentum exchange terms as purely dissipative processes. We
also follow this approach for the majority of the examples presented
in the paper, however we include one example demonstrating its
effect in Figure 4. Even with the inclusion of the active term from
[Bandara et al. 2016], we are only capable of simulating a rather
narrow range of porous media phenomena. While this is sufficient
for landslides and debris flows, phenomena such as capillary action
drawing water into dry sand is not achievable in our approach.

3.4 Cohesion and Saturation
As in Robert and Soga in [2013], we assume that the sand cohesion
varies as a function of water saturation. We measure saturation as
the percentage of water in themixturewhichwe estimate as the ratio
of the density of the water phase to the total density ϕw = ρw

ρw+ρs .
The cohesion of sand is zero when it is completely dry (ϕw = 0).
Intuitively, as dry sand becomes saturated with more water, the
cohesivity of the wet sand should increase as wet sand tends to better
hold its shape. Indeed this was observed in the work of Robert and

Variable Where Species Meaning
g - - gravitational constant
cE - - drag coefficient
mα
p particles both particle mass

V α 0
p particles both initial particle volume

xα ,np , xα ,n+1p particles both particle position
vα ,np , vα ,n+1p particles both particle velocity
Fnp , Fn+1p particles matrix deformation gradient

FsE,np , FsE,n+1p particles sand sand elastic deformation gradient
FsP,np , FsP,n+1p particles sand plastic deformation gradient
Jw,n
p , Jw,n+1

p particles water determinant deformation gradient
ϕs,np particle sand water saturation
cs,nCp

particle sand cohesion
vscp particle sand volume correction scalar
(∇v)αp particles matrix grid-based velocity gradient
mα ,n
i grid both grid node mass

vα ,ni grid both rasterized velocity
vα ,n+1i grid both final grid velocity
xα ,ni grid both Cartesian grid node locations
x̂α ,n+1i grid both grid positions moved by vα ,n+1i

ϕw,n+1
i grid mixed water saturation
fαi grid both internal forces

Table 1. Table of notation.

Soga in [2013]. However, they also observe that this increase only
continues to a maximal value cmax

C when the saturation is around
ϕw = 0.4. Beyond this point the sand becomes more compliant
to flowing and less cohesively elastic. In all of our multispecies
examples, we model water interaction with wet sand that is capable
of holding its shape. We thus set the sand cohesion to be initially
maximal, even in the absence of the water phase. Based on the
observations in Robert and Soga [2013], we then assume that the
cohesion decreases linearly with increasing saturation beyond this
point (with cohesion equal to zero at full saturation ϕw = 1).

4 DISCRETIZATION
First, we explain the notation used in the discretization section.
There are two sets of grids: one is associated with sand material
and the other is associated with water. As with the continuous
equations, the superscript α = s,w indicates the corresponding
species. Whenever a symbol has a subscript i or j, this denotes one
degree of freedom in grid node index i or j. Subscript p is used to
denote attributes that belong to a particle. A symbol that is not
followed by a subscript refers to the whole collection of grid nodes
as degrees of freedom. For example vs,n+1 refers to all of the sand
grid nodes that are active at step n + 1.
We discretize the continuum equation using the Material Point

Method (MPM). As in other approaches in the engineering literature
[Bandara and Soga 2015; Jassim et al. 2013; Mackenzie-Helnwein
et al. 2010], we use two sets of grids (Figure 7): one for the solid
particles and the other for the water particles. This is the primary
difference between our approach and others recently used in the
graphics literature. The overview of the algorithm is as follows:

(1) Transfer to grids: Transfer the mass and momentum of
each species to its corresponding grid (§4.1).
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Fig. 7. MPM algorithm with two grids. We use separate water and sand grids. The blue and red dots denote water and sand particles respectively. In the
overlapping region, we compute the momentum exchange term between the two species. We also compute the force based on individual constitutive model.

(2) Update grids momenta: Solving for the coupled water
and sand grid velocities using semi-implicit backward Euler
(§4.2).

(3) Update particles: Update all particle state, including the
cohesion based on saturation as well as plasticity return
mappings (§4.3).

4.1 Transfer to grid
We transfer mass and momentum from sand and water particles
to their respective grid using APIC [Jiang et al. 2015]. For each
species α , the particle p interacts with the grid node αi with weight
wα,n
ip = N (xα,np − xαi ). The weight is computed using the quadratic

B-spline interpolation kernel. Mass is computed according to

mα,n
i =

∑
p

wα,n
ip mα

p , (14)

and velocity according to

vα,ni =
1

mα,n
i

∑
p

wα,n
ip mα

p
(
vα,np + Cα,np

(
xα,ni − xα,np

))
, (15)

where the matrix Cα,np is an extra matrix stored per particle which
defines an affine velocity field local to the particle [Jiang et al. 2015].
Cα,np is initialized with Cα,0p = 0 and updated at the end of the
previous time step during the grid-to-particle transfer (Equation
29).

4.2 Update Grids Momenta
Using MPM, the forces in the sand and water phases are computed
as

fsi (x̂
s ) = −

∂ψ s

∂x̂si
= −

∑
p

V 0
p

(
∂ψU

∂Fs
(FsEp (x̂s )

)
(FsE,np )⊤∇ws,n

ip , (16)

fwi (x̂w ) = −
∂ψw

∂x̂wi
= −

∑
p

V 0
p

(
∂ψw

∂Jw
(Jw (x̂w ))

)
Jw,n∇ww,n

ip . (17)

As in [Stomakhin et al. 2013] we think of x̂αi as the position of
the grid node i corresponding to species α that has been deformed
from its original position xαi by an amount of ∆t vα,n+1i , i.e. x̂αi =
x̂αi (v

α,n+1
i ) = xα,ni + ∆t vα,n+1i . The discrete momentum balance

to be solved is

ms,n
i

(
vs,n+1i − vs,ni

)
= ∆t

(
fsi

(
x̂s

)
+ms,n

i g + dsi (x̂)
)

(18)

mw,n
j

(
vw,n+1
j − vw,n

j

)
= ∆t

(
fsj

(
x̂w

)
+mw,n

j g + dwj (x̂)
)
, (19)

where the discrete interaction term is given by

dsi j (x̂) = −cEm
s
i m

w
j (v

s,n+1
i − vw,n+1

j ), (20)

dwji (x̂) = cEm
s
i m

w
j (v

s,n+1
i − vw,n+1

j ), (21)

for some drag coefficient cE . Setting

M =
(
Ms,n

Mw,n

)
, v =

(
vs

vw

)
, f (x̂(vn+1)) =

(
fs (x̂s )
fw (x̂w )

)
,

and D to be the drag coefficient matrix derived from Equations 20
and 21, we can write the coupled system as

(M + ∆t D) vn+1 = Mvn + ∆t
(
Mg + f (x̂(vn+1))

)
. (22)

At each time step, we solve this nonlinear system using a few
iterations of a modified Newton’s method. Since the matrix D is
symmetric, and both fs and fw are derived as the negative gradient
of a potential, the whole system is symmetric when linearized (as-
suming the effects of plasticity are ignored in the linearization) and
can be solved using MINRES. We note that we do not include the
effect of plasticity when computing the derivatives of fs . Doing oth-
erwise results in non-symmetric sand force derivatives which would
require GMRES. Our omission of these terms in the linearization
of the system is a modification to the standard Newton’s method.
However, it is essential that we use implicit time stepping because
of the stiff momentum exchange terms and our lagged plasticity
approach is the key to making this efficient. Notably, this can lead
to cohesion artifacts without the unilateral modification in (§3.1.1)
(see Figure 10).

4.3 Update Particles
4.3.1 Update Jw . We do not keep track of the deformation gra-

dient Fw of water particles, instead we keep track of its determinant
Jw , which is updated according to the discretization of Equation 12,
i.e.

Jw,n+1
p =

(
I + ∆t tr(∇vw,n+1

p )
)
Jw,n .
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Fig. 8. 2D hourglass. An hourglass is flipped two times. The left most hourglass shaded grey depicts the initial state of sand at the beginning of the simulation.
Each set-of-three figures depicts the state of the sand after going through the neck the first time, and after flipping the hourglass for the first and second
time. The first two sets and the last two sets have grid dx = 7.4 × 10−3 and dx = 3.7 × 10−3 respectively. The first and third set are run without any volume
correction fix, while the second and last set are run with our volume fix.

We found that in practice, this discretization tends to offer more
stability than the alternative of evolving Fw followed by computing
its determinant.

4.3.2 Update Fs . Because we ignore the effects of plasticity dur-
ing the implicit solve for momenta, F̂sE,n+1 evolves with the grid
during the grid momentum update as in Stomakhin et al. [2013]

F̂sE,n+1p =
(
I + ∆t ∇vs,n+1p

)
FsE,n . (23)

F̂sE,n+1p is later processed for plasticity at the end of the time step
to define FsE,n+1p , which we discuss below.

4.3.3 Saturation based cohesion. We define the water saturation
on sand particles based on a heuristic. First, we populate a grid
whose domain is the union of the sand grid and water grid domain.
We mark each node that has a non-zero mass for both sand and
water species as ϕw,n+1

i = 1, otherwise ϕw,n+1
i = 0. One can think

of this grid as tracking an indicator function of the overlap region
between the sand and water constituents. We then compute the
saturation on the sand particle by interpolating from the grid to the
sand particle according to

ϕs,n+1p =
∑
i
wn
s,ipϕ

w,n+1
i . (24)

This approximates the saturation as equal to one (maximal) deep in
the interior of the overlap region with a ramp to zero exterior to the
region. In all of our multi-species examples, we assume that the wet
sand is already saturated and has reached its maximum cohesion
level. Hence, any amount of additional water saturation will lower
the cohesion level of the sand. We vary cohesion in a linear fashion
as a function of water saturation as discussed in Section 3.4

cs,n+1Cp = cs,0Cp (1 − ϕ
w,n+1
p ) (25)

where we note that the saturation is always in (0, 1). The approxi-
mation of the saturation in Equation 24 has errors biased towards
full saturation in the interior. This naturally leads to more rapid fail-
ure in the landslides and debris flows we consider in our examples
since the cohesion decreases more rapidly than it should. This is
an extreme simplification to correct behavior defined in Robert and
Soga [2013], but we found that it was effective for simulating these
phenomena.

4.3.4 Projection and volume correction treatment. We now de-
scribe the plastic projection of F̂sE,n+1 to FsE,n+1. We start from the
Drucker-Prager projection, P , as implemented by Klár et al. [2016].

P projects strains outside the yield surface onto the yield surface
according to the plastic flow rule. The yield region has the shape
of a cone. When the material is under expansion, the strain is pro-
jected to the tip. Otherwise it is projected to the side of the cone.
However, while this approach is adequate for projection directions
perpendicular to the hydrostatic axis, steps which project to the
tip can induce volume gain. This occurs when a particle undergoes
expansion that induces a cohesive elastic stress. In this case, stress
is projected to the tip, which is a stress free state. The particle is
then in a new rest state and any motion that would return it to
its initial volume would be penalized elastically. This phenomena
can lead to some clearly non-physical behavior (see Figure 8) and
there are existing corrections to this in the mechanics literature, e.g.
Dunatunga and Kamrin [2015] model material as a disconnected
stress-free medium under sufficient expansion.
We combat this artifact by giving each sand particle an extra

scalar attribute vscp which tracks changes in the log of the volume
gained during extension. This can be naturally taken into account
in the logarithmic-strain-based constitutive model to allow for com-
pression in the event of prior net expansion. At each time step, we
update vscp according to

vs,n+1cp = vs,ncp + log
(
det

(
FsE,n+1

))
− log

(
det

(
F̂sE,n+1

))
, (26)

where vs,0cp = 0. Finally, when we perform the Drucker-Prager
projection, we update ϵsE,n+1 according to

ϵsE,n+1 = P *
,
ϵ̂sE,n+1 +

vncp

d
I+
-
, (27)

where P is the projection operator described above.
This can be interpreted as projecting the elastic strain plus the

volume gain term. Lastly, FsE,n+1 = Uϵ̂sE,n+1V⊤ where F̂sE,n+1 =

Ue Σ̂
sE,n+1

V⊤ and ϵ̂sE,n+1 = log(Σ̂sE,n+1). See Figures 8 and 9 for
a demonstration of this effect. We note that this projection is par-
ticularly defined for constitutive models written in terms of the
logarithmic strain. For a more general constitutive model, it would
require non-trivial modification.

4.3.5 Update position and velocity. Velocity is updated according
to

vα,n+1p =
∑
i
wα,n
ip vα,n+1i , (28)
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Fig. 9. Pouring sand. The top row depicts the result of an explicit simulation with a coarser grid size (dx = 10−2), while the bottom row corresponds to a
finer grid size (dx = 10−3). The first and third column correspond to a projection step without volume correction, while the second and fourth column uses our
volume correction algorithm.

the affine velocity matrix is updated according to

Cα,n+1p =
∑
i
wn
ipv

α,n+1
i

(( 4
h2

)
(xα,ni − xα,np )

)⊤
, (29)

where h is the Eulerian grid spacing. Lastly position is updated
according to

xα,n+1p = xα,np + ∆t vα,n+1p . (30)

5 IMPLEMENTATION AND RESULTS
We use the sparse grid structure provided by OpenVDB [Museth
2013]. The table of performance and parameter for various examples
are listed in Table 2.

5.1 Unilateral hyperelasticity and implicit time stepping
Figure 10 demonstrates the effects of our unilateral constitutive
model with semi-implicit time stepping. We note that our unilateral
potential removes artificial cohesion effects in the simulation of dry
sand. The cohesion in this simulation is zero so the sand should
not stick together. When we use the constitutive model from [Klár
et al. 2016] with a semi-implicit time integration scheme, we see
artificial cohesion that gets worse as we increase the time step size.
Using our unilateral elastic energy function removes this artificial
cohesion. We further demonstrate that our semi-implicit scheme
gives results comparable to the more accurate, but more expensive
fully implicit backward Euler scheme in Figure 11. The importance
of choosing the right unilateral parameters is illustrated by Figure 6.

If the regions A and B in Figure 5 do not closely fit the Drucker-
Prager cone, then the accuracy of the simulation is compromised
for large time steps.

5.2 Volume fix and wet sand
To illustrate our volume fix to the Drucker-Prager artifact, we run
a simulation of an hourglass turned three times with explicit sym-
plectic Euler, as shown by Figure 8. The left most figure depicts the
initial state of the sand. For each set of three hourglass figures, we
show the state of the sand after going through the neck the first
time, after the first flip, and after the second flip. Figure 9 depicts a
similar artifact in a 3D piling of sand. Without the volume correc-
tion algorithm and without a sufficiently small grid resolution, we
observe a substantial volume gain artifact.

5.3 Wet sand and dam breach
In Figure 3 we demonstrate how varying cohesion gives rise to
different wet sand behaviors. In Figure 2 we demonstrate our ap-
proach with an example that is representative of the types of gravity
driven flows we are interested in with our approach. As water flows
into the wall of a dam, the saturation increases weakening it. The
cohesion of sand decreases with saturation and the dam eventually
breaks.

We demonstrate the effect of the active component of the momen-
tum exchange terms in Equation 13 using a simulation of a 2D dam
breach, shown in Figure 4. Again water pours in from a reservoir
and slowly erodes a retaining wall. We note that the active term has
only a subtle effect on the bulk dynamics of the motion for these
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Fig. 10. 2D sand pile. From top to bottom row: initial, middle, and final configuration of a 2D sand pile. The left column is an explicit simulation with
maximum ∆t = 10−4 . The two columns in the middle are the results of semi-implicit simulation with the regular constitutive model and max ∆t = 10−2 and
10−3 respectively. Note that both suffer from artificial cohesion, although it diminishes with smaller ∆t . On the right is semi-implicit time stepping with our
unilateral energy density function with maximum ∆t = 10−2. Note that it does not suffer from artificial cohesion.

types of flows. We discretize the active term by adding∑
−pw,n

p ∇ws,n
ip

mw,n
i

ms,n
i +mw,n

i

to the water drag term in Equation 21. We then define the solid drag
term to be equal and opposite to the water drag in accordance with
the zero-net-sum nature of the momentum exchange.

6 LIMITATIONS AND FUTURE WORK
Our approach has a number of limitations. Themomentum exchange
model we use in the water/sand multispecies examples is rather
simplified. While adequate for gravity driven flows like landslides
and levee breaches, it is inadequate for capillary driven phenom-
ena like water being drawn in to dry sand. Such phenomena has
been captured by prior approaches like that of Lenaerts and Dutre
[2009]. Furthermore we fail to capture behavior like those in Rungji-
ratananon et al. [2008] where surface tension effects in wetting are
more accurately captured.

Although our approximation to the dependence of sand cohesion
on saturation is useful for facilitating rapid failure of water/sand
mixtures, it is an extreme simplification to the correct behavior
defined in Robert and Soga [2013] and this compromises its accuracy
dramatically. This reduces the applicability of our approach outside
of visually plausible simulation applications.

Large values of the momentum exchange coefficient cE can lead
to ill-conditioning in the linear systems that arise during implicit
time stepping. We found that these cases required many MINRES
iterations to resolve and lead to excessive run times. This compli-
cated the simulation of slurry materials where the water and sand
remain mixed. In the future we would like to examine appropriate
preconditioners to improve the performance. Also, while we omit
or use a very simplistic buoyancy term for the reversible momenta
exchange in the pα equations, we would like to examine the addi-
tion of more accurate terms to produce phenomena like absorbent
sponges interacting with liquids. Lastly, we would like to examine
the suitability of our multiple grid MPM framework for the simu-
lation of more general multi-species interactions like chemically
reacting flow.
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Fig. 11. Fully implicit unilateral. Comparison of increasingly implicit time stepping schemes for 2D sand column collapse. The simulations on the left and
at the center are run with the semi-implicit scheme with the regular and unilateral energy density functions respectively. The right-most figure shows a
fully implicit scheme with our modified energy density function. Note that the unilateral density function with semi-implicit time stepping yields a good
approximation of the fully implicit result, while the regular energy density suffers from artificial cohesion.
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